Soil biodiversity knowledge and use worldwide: Results from a global survey
DOI:
https://doi.org/10.25674/410Keywords:
soil biodiversity, soil invertebrates, bibliographic database, GLOSOBAbstract
Soil biodiversity is a major component of global biodiversity, but remains poorly characterized in many locations, and is under threat mainly due to land use change and intensification. Detailed assessments of soil biodiversity and a better knowledge of the ecology and distribution of soil organisms worldwide are needed to address threats to soil function, and potential impacts on ecosystem service delivery. A worldwide expert survey was conducted in March 2022 to identify who is doing what, where and how, as well as the main gaps, pitfalls and opportunities across existing national initiatives and research. The questions addressed microbes, fauna and their activity in soils, community and functional assessments, inventories, mapping and monitoring activities, ecosystem services, applications, threats to soil biodiversity, education and communication activities, and public policies related to soil biodiversity. Over 2,000 responses were received, from >1,350 institutions and 135 countries, mainly from experts in research and academia. Respondents worked mostly with soil microbes, focusing primarily on bacteria (85%) and fungi (79%) and less on Archaea, Algae, soil viruses and lichens. Most applied genomic or molecular techniques, as well as activity and process measurements. Soil fauna was less studied overall, with few respondents active in taxonomy (19-34% depending on the taxon). Fifty countries reported inventories, and 48 had monitoring programs, though most (>65%) covered only microbes and fewer (<50%) addressed fauna taxa. A wide variety of methods were used to assess soil fauna and they were widely used as bioindicators. The survey highlighted the lack of studies on the valuation of multiple ecosystem services provided by soil biota, and the poor knowledge on public policies regarding soils and its biodiversity. We identified a need for harmonized global-scale sampling and measuring protocols that are integrated into conventional soil surveys and soil health assessments, as well as approaches that consider multiple taxonomic groups, to provide key information to support policy agendas aimed at soil conservation and sustainability and to propose a design for a Global Soil Biodiversity Observatory.
Downloads
References
Aali, G., & Shokraneh, F. (2021). No limitations to language, date, publication type, and publication status in search step of systematic reviews. Journal of Clinical Epidemiology, 133. https://doi.org/10.1016/j.jclinepi.2021.02.002
A‘Bear, A. D., Jones, T. H., & Boddy, L. (2014). Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecology, 10, 34–43. https://doi.org/10.1016/j.funeco.2013.01.009
Anthony, M. A., Bender, S. F., & van der Heijden, M. G. A. (2023). Enumerating soil biodiversity. Proceedings of the National Academy of Sciences of the USA, 120, e2304663120. https://doi.org/10.1073/pnas.2304663120
Arribas, P., Andújar, C., Salces‐Castellano, A., Emerson, B. C., & Vogler, A. P. (2021). The limited spatial scale of dispersal in soil arthropods revealed with whole‐community haplotype‐level metabarcoding. Molecular Ecology, 30(1), 48–61. https://doi.org/10.1111/mec.15591
Bardgett, R. D., Usher, M. B., & Hopkins, D. W. (2005). Biological diversity and function in soils. Cambridge University Press.
Betancur‐Corredor, B., Lang, B., & Russell, D. J. (2022). Reducing tillage intensity benefits the soil micro‐ and mesofauna in a global meta‐analysis. European Journal of Soil Science, 73(6), e13321. https://doi.org/10.1111/ejss.13321
Betancur‐Corredor, B., Lang, B., & Russell, D. J. (2023). Organic nitrogen fertilization benefits selected soil fauna in global agroecosystems. Biology and Fertility of Soils, 59(1), 1–16. https://doi.org/10.1007/s00374-022-01677-2
Briones, M. J. I. (2018). The serendipitous value of soil fauna in ecosystem functioning: The unexplained explained. Frontiers in Environmental Science, 6, 149. https://doi.org/10.3389/fenvs.2018.00149
Brown, G. G., & Sautter, K. D. (2009). Biodiversity, conservation and sustainable management of soil animals: The XV International Colloquium on Soil Zoology and XII International Colloquium on Apterygota. Pesquisa Agropecuária Brasileira, 44, i–ix.
Brown, G. G., Ferreira, T., Correia, M. E. F., Niva, C., Jesus, E. C., Oliveira, M. I. L., Antunes, L. F. S., Parron, L. M., Coelho, M. R. R., Chaer, G. M., et al. (2025). Soil biodiversity knowledge and use worldwide: Results from a global survey. Soil Organisms, 97(SI), 7–31.
Brown, G. G., Parnell, J. J., Kobayashi, M., Ferreira, T., Parron, L. M., Correia, M. E. F., Jesus, E. C., Chaer, G. M., Coelho, M. R. R., Niva, C., et al. (2025a). Towards a Global Soil Biodiversity Observatory (GLOSOB): Science and policy backgrounds. Soil Organisms, 97(SI), 127–141.
Caron, D., & Countway, P. (2009). Hypotheses on the role of the protistan rare biosphere in a changing world. Aquatic Microbial Ecology, 57, 227–238. https://doi.org/10.3354/ame01352
Cameron, E. K., Martins, I. S., Lavelle, P., Mathieu, J., Tedersoo, L., Gottschall, F., Guerra, C. A., et al. (2018). Global gaps in soil biodiversity data. Nature Ecology & Evolution, 2(7), 1042–1043. https://doi.org/10.1038/s41559-018-0573-8
Chen, J., Zhao, J., Du, H., Xu, M., Lei, Y., Chen, W., & Chao, J. (2024). Earthworms’ role in the management and regulation of croplands: Comparative research on field and laboratory studies revealed by bibliometric analysis. Ecological Indicators, 163, 112077. https://doi.org/10.1016/j.ecolind.2024.112077
Chiappero, M. F., Rossetti, M. R., Moreno, M. L., & Pérez-Harguindeguy, N. (2024). A global meta-analysis reveals a consistent reduction of soil fauna abundance and richness as a consequence of land use conversion. Science of the Total Environment, 173822. https://doi.org/10.1016/j.scitotenv.2024.173822
Christel, A., Maron, P. A., & Ranjard, L. (2021). Impact of farming systems on soil ecological quality: A meta-analysis. Environmental Chemistry Letters, 19(6). https://doi.org/10.1007/s10311-021-01302-y
Conti, E., & Mulder, C. (2022). Chemistry-driven Enchytraeidae assemblages acting as soil and ecosystem engineers in edaphic communities. Ecological Indicators, 144, 109529. https://doi.org/10.1016/j.ecolind.2022.109529
Culik, M. P., & Filho, D. Z. (2003). Diversity and distribution of Collembola (Arthropoda: Hexapoda) of Brazil. Biodiversity and Conservation, 12(6), 1119–1143. https://doi.org/10.1023/A:1023069912619
Decaëns, T., Jiménez, J. J., Gioia, C., Measey, G. J., & Lavelle, P. (2006). The values of soil animals for conservation biology. European Journal of Soil Biology, 42, S23–S38. https://doi.org/10.1016/j.ejsobi.2006.07.00
Didden, W., & Römbke, J. (2001). Enchytraeids as indicator organisms for chemical stress in terrestrial ecosystems. Ecotoxicology and Environmental Safety, 50, 25–43.
Dutta, T. K., & Phani, V. (2023). The pervasive impact of global climate change on plant-nematode interaction continuum. Frontiers in Plant Science, 14, 1143889. https://doi.org/10.3389/fpls.2023.1143889
FAO. (2015). Status of the world’s soil resources: Main report. FAO & ITPS.
FAO. (2020). State of knowledge of soil biodiversity – Status, challenges and potentialities. Summary for policy makers. FAO, ITPS, GSBI, SCBD & EC. https://policycommons.net/artifacts/1526136/state-of-knowledge-of-soil-biodiversity-status-challenges-and-potentialities/2214245/
Fioratti Junod, M., Reid, B. J., Sims, I., & Miller, A. J. (2023). Below-ground pitfall traps for standardised monitoring of soil mesofauna: Design and comparison to Berlese/Tullgren funnels. Pedobiologia, 101, 150911. https://doi.org/10.1016/j.pedobi.2023.150911
Garg, D., Patel, N., Rawat, A., & Rosado, A. S. (2024). Cutting edge tools in the field of soil microbiology. Current Research in Microbial Sciences, 6, 100226. https://doi.org/10.1016/j.crmicr.2024.100226
Geisen, S., Mitchell, E. A. D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., Fernández, L. D., Jousset, A., Krashevska, V., Singer, D., Spiegel, F. W., Walochnik, J., & Lara, E. (2018). Soil protists: A fertile frontier in soil biology research. FEMS Microbiology Reviews, 42, 293–323. https://doi.org/10.1093/femsre/fuy006
Gergócs, V., & Hufnagel, L. (2009). Application of oribatid mites as indicators (review). Applied Ecology and Environmental Research, 7(1), 79–98. https://doi.org/10.15666/aeer/0701_079098
Guerra, C. A., Heintz-Buschart, A., Sikorski, J., Chatzinotas, A., Guerrero-Ramírez, N., Cesarz, S., Beaumelle, L., et al. (2020). Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 11(1), 3870. https://doi.org/10.1038/s41467-020-17688-2
Jeffery, S., Giardi, C., Jones, A., Montanarella, L., Marmo, L., Miko, L., Ritz, K., Römbke, J., & van der Putten, W. H. (2010). European atlas of soil biodiversity. Publications Office of the European Union. https://data.europa.eu/doi/10.2788/94222
Jernigan, A., Kao-Kniffin, J., Pethybridge, S., & Wickings, K. (2023). Soil microarthropod effects on plant growth and development. Plant and Soil, 483(1–2), 27–45. https://doi.org/10.1007/s11104-022-05766-x
Joimel, S., Chassain, J., Artru, M., & Faburé, J. (2022). Collembola are among the most pesticide‐sensitive soil fauna groups: A meta‐analysis. Environmental Toxicology and Chemistry, 41(10), 2333–2341. https://doi.org/10.1002/etc.5428
Keller, C., Heck, T., & Rittberger, M. (2022). How many sources are needed? The effects of bibliographic databases on systematic review outcomes. In The ACM/IEEE Joint Conference on Digital Libraries in 2022 (JCDL’22) (June 20–24, Cologne, Germany). https://doi.org/10.1145/1234567890
Kevan, D. K. M. c. E. (1985). Soil zoology, then and now—mostly then. Quaestiones Entomologicae, 21, 371–472.
Krogh, P. H., Kostov, K., & Damgaard, C. F. (2020). The effect of Bt crops on soil invertebrates: A systematic review and quantitative meta-analysis. Transgenic Research, 29(5), 487–498. https://doi.org/10.1007/s11248-020-00213-y
Lang, B., Betancur-Corredor, B., & Russell, D. J. (2023). Soil mineral nitrogen content is increased by soil mesofauna and nematodes–A meta-analysis. Soil Organisms, 95(2), 117–128. https://doi.org/10.25674/so95iss2id310
Lavelle, P. (2009). Ecology and the challenge of a multifunctional use of soil. Pesquisa Agropecuária Brasileira, 44(8), 803–810.
Lavelle, P., Mathieu, J., Spain, A., Brown, G., Fragoso, C., Lapied, E., De Aquino, A., et al. (2022). Soil macroinvertebrate communities: A worldwide assessment. Global Ecology and Biogeography, 31(7), 1261–1276. https://doi.org/10.1111/geb.13492
Liao, J.-R., Ho, C.-C., & Ko, C.-C. (2023). Milestones and future directions in the taxonomy of Phytoseiid mites (Acari: Mesostigmata) in Taiwan. Formosan Entomologist, 43, 15–23. https://doi.org/10.6662/TESFE.202302_43(1).002
Lindo, Z., et al. (2025). The threat-work: A network of potential threats to soil biodiversity. Soil Organisms, 97(SI), 31–46.
Lienhard, A., & Krisper, G. (2021). Hidden biodiversity in microarthropods (Acari, Oribatida, Eremaeoidea, Caleremaeus). Scientific Reports, 11, 23123. https://doi.org/10.1038/s41598-021-02602-7
Mathieu, J., Antunes, A. C., Barot, S., Bonato Asato, A. E., Bartz, M. L. C., Brown, G. G., Calderon-Sanou, I., Decaëns, T., Fonte, S. J., Ganault, P., et al. (2022). SOilFauna – A global synthesis effort on the drivers of soil macrofauna communities and functioning: Workshop report. Soil Organisms, 94(2), 111–126. https://doi.org/10.25674/so94iss2id282
Mathieu, J., Lavelle, P., Brown, G. G., Eisenhauer, N., & Cooper, M. (2024). Global Soil Macrofauna. http://www.globalsoilmacrofauna.com/
Nicol, J., Turner, S., Coyne, D., den Nijs, L., Sue, H., & Maafi, Z. (2011). Current nematode threats to world agriculture. In Genomics and molecular genetics of plant-nematode interactions (pp. 21–43). https://doi.org/10.1007/978-94-007-0434-3_2
Phillips, H. R. P., Bach, E. M., Bartz, M. L. C., et al. (2021). Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 8, 136. https://doi.org/10.1038/s41597-021-00912-z
Phillips, H. R. P., Cameron, E. K., Eisenhauer, N., Burton, V. J., Ferlian, O., Jin, Y., Kanabar, S., Malladi, S., Murphy, R. E., Peter, A., et al. (2024). Global changes and their environmental stressors have a significant impact on soil biodiversity—A meta-analysis. iScience, 27(9), 110540. https://doi.org/10.1016/j.isci.2024.110540
Potapov, A., Bellini, B., Chown, S., Deharveng, L., Janssens, F., Kováč, Ľ., Kuznetsova, N., Ponge, J.-F., Potapov, M., et al. (2020). Towards a global synthesis of Collembola knowledge – Challenges and potential solutions. Soil Organisms, 92(3), 161–188. https://doi.org/10.25674/so92iss3pp161
Potapov, A. M., Chen, T. W., Striuchkova, A. V., Alatalo, J. M., Alexandre, D., Arbea, J., ... & Scheu, S. (2024). Global fine-resolution data on springtail abundance and community structure. Scientific Data, 11(1), 22. https://doi.org/10.1038/s41597-023-02784-x
Pranckutė, R. (2021). Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications, 9(1), 12. https://doi.org/10.3390/publications9010012
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Römbke, J., Schmelz, R. M., & Pélosi, C. (2017). Effects of organic pesticides on enchytraeids (Oligochaeta) in agroecosystems: Laboratory and higher-tier tests. Frontiers in Environmental Science, 5, 20. https://doi.org/10.3389/fenvs.2017.00020
Saccaggi, D. L., & Ueckermann, E. A. (2024). The problem of taxonomic uncertainty in biosecurity: South African mite interceptions as an example. Acarologia, 64(2), 363–369. https://doi.org/10.24349/top1-r59v
Schmelz, R. M., Niva, C. C., Römbke, J., & Collado, R. (2013). Diversity of terrestrial Enchytraeidae (Oligochaeta) in Latin America: Current knowledge and future research potential. Applied Soil Ecology, 69, 13–20.
Silberschatz, A., Galvin, P. B., & Gagne, C. (1999). Applied operating system concepts. John Wiley & Sons, Inc.
Silva, O. D. D., & Malaquias, J. V. (2021). Organização de dados de pesquisa no PostgreSQL e realização de análise estatística em ambiente R: abordagem prática. Embrapa Cerrados, Documentos 370, 81p.
Swift, M. J., Heal, O. W., Anderson, J. M., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems (Vol. 5). Univ of California Press.
Szabó, B., Korányi, D., Gallé, R., Lövei, G. L., Bakonyi, G., & Batáry, P. (2023). Urbanization decreases species richness, and increases abundance in dry climates whereas decreases in wet climates: A global meta-analysis. Science of the Total Environment, 859, 160145. http://dx.doi.org/10.1016/j.scitotenv.2022.160145
Tibbett, M., Fraser, T. D., & Duddigan, S. (2020). Identifying potential threats to soil biodiversity. PeerJ, 8, e9271. https://doi.org/10.7717/peerj.9271
Van Den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., de Goede, R. G. M., Adams, B. J., Ahmad, W., Andriuzzi, W. S., et al. (2019). Soil nematode abundance and functional group composition at a global scale. Nature, 572(7768), 194–198. https://doi.org/10.1038/s41586-019-1418-6
Wall, D. H., Nielsen, U. N., & Six, J. (2015). Soil biodiversity and human health. Nature, 528(7580), 69–76. https://doi.org/10.1038/nature15744
Walter, D. E., & Proctor, H. C. (2013). Mites–ecology, evolution and behaviour: Life at a microscale (2nd ed.). Springer.
Wilder, E. I., & Walters, W. H. (2021). Using conventional bibliographic databases for social science research: Web of Science and Scopus are not the only options. Scholarly Assessment Reports, 3(1), 4, 1–17. https://doi.org/10.29024/sar.36
Xiong, W., Song, Y., Yang, K., Gu, Y., Wei, Z., Kowalchuk, G. A., Xu, Y., Jousset, A., Shen, Q., & Geisen, S. (2020). Rhizosphere protists are key determinants of plant health. Microbiome, 8, 27. https://doi.org/10.1186/s40168-020-00799-9
Zhang, Y., Peng, S., Chen, X., & Chen, H. Y. (2022). Plant diversity increases the abundance and diversity of soil fauna: A meta-analysis. Geoderma, 411, 115694. https://doi.org/10.1016/j.geoderma.2022.115694
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 George Brown, Talita Ferreira, Maria Elizabeth Fernandes Correia, Cintia Niva, Ederson da Conceição Jesus, Maria Inês Lopes de Oliveira, Luis Fernando de Sousa Antunes, Lucilia Maria Parron, Marcia Reed Rodrigues Coelho, Guilherme Montander Chaer, Juaci Malaquias, Ozanival Dario Dantas da Silva, Iêda Carvalho Mendes, Peter de Ruiter, Carlos Guerra, Zoë Lindo, Jeff Battigelli, Gian Lucca Bagnara, Giulio Malorgio, Rosalina González, Lucca Montanarella, Diana Wall †, Isabelle Verbeke, Julia Mousquer, Natalia Rodríguez Eugenio, Ronald Vargas, Rosa Corona Cuevas, John Jacob Parnell

This work is licensed under a Creative Commons Attribution 4.0 International License.
Soil Organisms is committed to fair open access publishing. All articles are available online without publication fees. Articles published from Vol. 96 No. 3 (2024) onwards are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Articles published from Vol. 80 No. 1 through Vol. 96 No. 2 are available under the previous terms, allowing non-commercial, private, and scientific use.