The threat-work: a network of potential threats to soil biodiversity
DOI:
https://doi.org/10.25674/418Keywords:
soil organic matter, soil structure, best practices, conservation, Soil nutrients, soil biodiversityAbstract
Soils are estimated to contain more than half of the biodiversity on our planet, encompassing a rich spectrum of genes, organisms and functions that play a crucial role in many ecological processes, such as nutrient cycling, organic matter decomposition, and the creation of a well-structured soil matrix. However, soils encounter many threats that significantly challenge their functionality and biodiversity. The FAO Report on the State of Knowledge of Soil Biodiversity identified 12 primary threats to soil and soil biodiversity, highlighting regional and unique ecozonal perspectives. Most threats to soil come from anthropogenic land use activities and management practices associated with intensive agriculture, livestock, forestry, and other resource extraction activities, as well as industrial activities, infrastructure and urbanization, which vary in strength across various regions and ecozones. However, these threats are highly interconnected and often culminate in losses to soil organic matter (SOM) and soil organic carbon (SOC) –– also considered a threat itself –– that drives changes in physical, chemical and biological attributes of the soil environment that lead to soil biodiversity loss. We conceptualize these interlinked threats as a threat network or ‘threat-work’, where the loss of SOM plays a pivotal role. Addressing this threat-work requires a mechanistic understanding of how soil biodiversity loss occurs across diverse landscapes and ecozones. SOM is essential for creating a favorable environment for soil biodiversity by enhancing nutrient availability, water retention, and soil structure. Losses in SOM, closely tied to the mechanisms of soil biodiversity loss, alter physical, chemical, and biological soil attributes, leading to biodiversity decline. Such knowledge can identify priority areas for restoration and inform best practices to conserve soil biodiversity. Protecting and enhancing SOM is central to these efforts. By disentangling the drivers of soil biodiversity loss and their interactions within this threat network, we can develop holistic strategies to mitigate soil biodiversity loss, safeguard soil health, and ensure the sustainability of soil ecosystems globally.
Downloads
References
Addison, J. A. (2009). Distribution and impacts of invasive earthworms in Canadian forest ecosystems. Biological Invasions, 11, 59–79.
Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services—A global review. Geoderma, 262, 101–111.
Anderson, J. M. (1975). The enigma of soil animal species diversity. In J. Vaněk (Ed.), Progress in Soil Zoology (pp. 51–58). Springer. https://doi.org/10.1007/978-94-010-1933-0_5
Andriuzzi, W. S., Pulleman, M. M., Schmidt, O., Brussaard, L., & Faber, J. H. (2015). Anecic earthworms (Lumbricus terrestris) alleviate negative effects of extreme rainfall events on soil and plants in field mesocosms. Plant and Soil, 397, 103–113. https://doi.org/10.1007/s11104-015-2604-4
Anthony, M. A., Bender, S. F., & van der Heijden, M. G. (2023). Enumerating soil biodiversity. Proceedings of the National Academy of Sciences, 120, e2304663120.
Barreto, C., & Lindo, Z. (2018). Drivers of decomposition and the detrital invertebrate community differs across a hummock-hollow microtopology in boreal peatlands. Écoscience, 25, 39–48. https://doi.org/10.1080/11956860.2017.1412282
Barreto, C., & Lindo, Z. (2022). Response of soil biodiversity to global change. Pedobiologia, 90, 150792. https://doi.org/10.1016/j.pedobi.2022.150792
Barreto, C. R. A., Rillig, M., & Lindo, Z. (2020). Addition of polypropylene and polyester in soil affects decomposition rates but not microarthropod communities. Soil Organisms, 92(2), 109–119. https://doi.org/10.25674/so92iss2pp109
Barreto, C., Conceição, P. H. S., de Lima, E. C. A., Stievano, L. C., Zeppelini, D., Kolka, R. K., Hanson, P. J., & Lindo, Z. (2023). Large-scale experimental warming reduces soil faunal biodiversity through peatland drying. Frontiers in Environmental Science, 11, 1153683.
Barreto, C., Buchkowski, R. W., & Lindo, Z. (2024). Restructuring of soil food webs reduces carbon storage potential in boreal peatlands. Soil Biology and Biochemistry, 193, 109413. https://doi.org/10.1016/j.soilbio.2024.109413
Beaumelle, L., Thouvenot, L., Hines, J., Jochum, M., Eisenhauer, N., & Phillips, H. R. P. (2021). Soil fauna diversity and chemical stressors: A review of knowledge gaps and roadmap for future research. Ecography, 44, 845–859.
Biswas, B., Qi, F., Biswas, J. K., Wijayawardena, A., Khan, M. A. I., & Naidu, R. (2018). The fate of chemical pollutants with soil properties in the climate change paradigm – A review. Soil Systems, 2(3), 51.
Blankinship, J. C., Niklaus, P. A., & Hungate, B. A. (2011). A meta-analysis of responses of soil biota to global change. Oecologia, 165(3), 553–565. https://doi.org/10.1007/s00442-011-1909-0
Bodner, G., Zeiser, A., Keiblinger, K., Rosinger, C., Winkler, S. K., Stumpp, C., & Weninger, T. (2023). Managing the pore system: Regenerating the functional pore spaces of natural soils by soil-health oriented farming systems. Soil & Tillage Research, 234, 105862. https://doi.org/10.1016/j.still.2023.105862
Brousseau, P.-M., Chauvat, M., De Almeida, T., & Forey, E. (2021). Invasive knotweed modifies predator–prey interactions in the soil food web. Biological Invasions, 23, 1987–2002. https://doi.org/10.1007/s10530-020-02431-0
Brussaard, L., de Ruiter, P. C., & Brown, G. G. (2007). Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems & Environment, 121(3), 233–244. https://doi.org/10.1016/j.agee.2006.12.013
Buchkowski, R. W., Barreto, C., & Lindo, Z. (2023). soilfoodwebs: An R package for analyzing and simulating nutrient fluxes through food webs. European Journal of Soil Biology, 119, 103556. https://doi.org/10.1016/j.ejsobi.2023.103556
Cadel, M., Cousin, I., & Therond, O. (2023). Relationships between soil ecosystem services in temperate annual field crops: A systematic review. Science of the Total Environment, 902, 165930. https://doi.org/10.1016/j.scitotenv.2023.165930
Camenzind, T., Mason-Jones, K., Mansour, I., Rillig, M. C., & Lehmann, J. (2023). Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nature Geoscience, 16, 115–122. https://doi.org/10.1038/s41561-022-01109-w
Carrascosa, M., Sánchez-Moreno, S., & Alonso-Prados, J. L. (2015). Effects of organic and conventional pesticides on plant biomass, nematode diversity and the structure of the soil food web. Nematology, 17(1), 11–26. https://doi.org/10.1163/15685411-00002837
Coleman, D. C. (2008). From peds to paradoxes: Linkages between soil biota and their influences on ecological processes. Soil Biology and Biochemistry, 40(2), 271–279. https://doi.org/10.1016/j.soilbio.2007.08.005
Cotrufo, F. M., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization. Global Change Biology, 19(4), 988–995. https://doi.org/10.1111/gcb.12113
Cramer, G. R., Läuchli, A., & Polito, V. S. (1985). Displacement of Ca²⁺ by Na⁺ from the plasmalemma of root cells. Plant Physiology, 79(1), 207–211. https://doi.org/10.1104/pp.79.1.207
de Castro, Berdugo, M., Eldridge, D.J., Eisenhauer, N., Singh, B.K., Cui, H., Abades, S., Alfaro, F.D., Bamigboye, A.R., Bastida, F., et al. (2021). Local stability properties of complex, species-rich soil food webs with functional block structure. Ecology and Evolution, 11(23), 16070–16081. https://doi.org/10.1002/ece3.8303
de Vries, F. T., & Caruso, T. (2016). Eating from the same plate? Revisiting the role of labile carbon inputs in the soil food web. Soil Biology and Biochemistry, 102, 4–9. https://doi.org/10.1016/j.soilbio.2016.06.023
Delgado-Baquerizo, M., Reich, P. B., Trivedi, C., Eldridge, D. J., Abades, S., Alfaro, F. D., ... & Singh, B. K. (2020). Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4, 210–220. https://doi.org/10.1038/s41559-019-1084-y
Du, Y., Guo, S., Wang, R., Song, X., & Ju, X. (2023). Soil pore structure mediates the effects of soil oxygen on the dynamics of greenhouse gases during wetting-drying phases. Science of the Total Environment, 895, 165192. https://doi.org/10.1016/j.scitotenv.2023.165192
FAO, ITPS, GSBI, SCBD, & EC. (2020). State of knowledge of soil biodiversity – Status, challenges and potentialities: Report 2020. FAO. https://doi.org/10.4060/cb1928en
Gardi, C., Jeffery, S., & Saltelli, A. (2013). An estimate of potential threats levels to soil biodiversity in EU. Global Change Biology, 19(5), 1538–1548. https://doi.org/10.1111/gcb.12159
Geisen, S., Wall, D. H., & van der Putten, W. H. (2019). Challenges and opportunities for soil biodiversity in the Anthropocene. Current Biology, 29(19), R1036–R1044. https://doi.org/10.1016/j.cub.2019.08.007
Giller, P. S. (1996). The diversity of soil communities: The ‘poor man’s tropical rainforest’. Biodiversity and Conservation, 5(2), 135–168. https://doi.org/10.1007/BF00055827
Gonzalez, J. M., & Aranda, B. (2023). Microbial growth under limiting conditions—Future perspectives. Microorganisms, 11(7), 1641. https://doi.org/10.3390/microorganisms11071641
Gonzalez, R., Kavouras, J., Barragan, V., Bernhard, E., Dawalibi, S., Diaz, M., ... & Pawlica, N. (2021). Use the metabolic fingerprint in microbial communities to evaluate the anthropogenic impact on soils. In FAO (Ed.), Keep soil alive, protect soil biodiversity – Global Symposium on Soil Biodiversity 19–22 April 2021: Proceedings. FAO. https://www.fao.org/documents/card/en/c/cb1928en
Gregory, A. S., Ritz, K., McGrath, S. P., Quinton, J. N., Goulding, K. W. T., Jones, R. J. A., ... & Whitmore, A. P. (2015). A review of the impacts of degradation threats on soil properties in the UK. Soil Use and Management, 31(1), 1–15. https://doi.org/10.1111/sum.12118
Guerra, C. A., Heintz-Buschart, A., Sikorski, J., Chatzinotas, A., Guerrero-Ramírez, N., Cesarz, S., Beaumelle, L., Rillig, M.C., Maestre, F.T., Delgado-Baquerizo, M., et al. (2020a). Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 11, 3870. https://doi.org/10.1038/s41467-020-17688-2
Guerra, C. A., Rosa, I. M. D., Valentini, E., Wolf, F., Filipponi, F., Karger, D. N., ... & Eisenhauer, N. (2020b). Global vulnerability of soil ecosystems to erosion. Landscape Ecology, 35, 823–842. https://doi.org/10.1007/s10980-020-00992-9
Guerra, C. A., Berdugo, M., Eldridge, D. J., Eisenhauer, N., Singh, B. K., Cui, H., ... & Delgado-Baquerizo, M. (2022). Global hotspots for soil nature conservation. Nature, 610(7930), 693–698. https://doi.org/10.1038/s41586-022-05399-z
Haddaway, N. R., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E., Thomsen, I. K., ... & Söderström, B. (2015). What are the effects of agricultural management on soil organic carbon in boreo-temperate systems? Environmental Evidence, 4, 23. https://doi.org/10.1186/s13750-015-0049-0
Han, L., Chen, L., Feng, Y., Kuzyakov, Y., Chen, Q., Zhang, S., ... & Rillig, M. C. (2024). Microplastics alter soil structure and microbial community composition. Environment International, 185, 108508. https://doi.org/10.1016/j.envint.2024.108508
Hayne, R. J., & Swift, R. S. (1990). Stability of soil aggregates in relation to organic constituents and soil water content. Journal of Soil Science, 41(1), 73–83. https://doi.org/10.1111/j.1365-2389.1990.tb00045.x
Hopple, A. M., Wilson, R. M., Kolton, M., Zalman, C. A., Chanton, J. P., Kostka, J., ... & Bridgham, S. D. (2020). Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications, 11, 2373. https://doi.org/10.1038/s41467-020-16311-8
Hunt, H. W., Coleman, D. C., Ingham, E. R., Ingham, R. E., Elliott, E. T., Moore, J. C., ... & Morley, C. R. (1987). The detrital food web in a shortgrass prairie. Biology and Fertility of Soils, 3(1–2), 57–68. https://doi.org/10.1007/BF00260580
Husson, O. (2013). Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant and Soil, 362, 389–417. https://doi.org/10.1007/s11104-012-1429-7
Intergovernmental Panel on Climate Change (IPCC). (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Cambridge University Press. https://doi.org/10.1017/9781009325844
Jeffery, S., & Gardi, C. (2010). Soil biodiversity under threat: A review. Acta Societatis Zoologicae Bohemicae, 74, 7–12.
Jeffery, S., Gardi, C., & Jones, A. (2010). European atlas of soil biodiversity. Publications Office of the European Union. https://data.europa.eu/doi/10.2788/94222
Johnston, A. E., Poulton, P. R., & Coleman, K. (2009). Soil organic matter: Its importance in sustainable agriculture and carbon dioxide fluxes. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 101, pp. 1–57). Academic Press. https://doi.org/10.1016/S0065-2113(08)00801-8
Jones, S. K., Estrada-Carmona, N., Juventia, S. D., Dulloo, M. E., Laporte, M. A., Villani, C., & Remans, R. (2021). Agrobiodiversity Index scores show agrobiodiversity is underutilized in national food systems. Nature Food, 2(10), 712–723. https://doi.org/10.1038/s43016-021-00342-7
Junting, Y., Xiaosong, L., Bo, W., Junjun, W., Bin, S., Changzhen, Y., & Zhihai, G. (2021). High spatial resolution topsoil organic matter content mapping across desertified land in Northern China. Frontiers in Environmental Science, 9, 668912. https://doi.org/10.3389/fenvs.2021.668912
Klaminder, J., Krab, E. J., Larsbo, M., Jonsson, H., Fransson, J., & Koestel, J. (2023). Holes in the tundra: Invasive earthworms alter soil structure and moisture in tundra soils. Science of the Total Environment, 859, 160125. https://doi.org/10.1016/j.scitotenv.2022.160125
Kronzucker, H. J., Coskun, D., Schulze, L. M., Wong, J. R., & Britto, D. T. (2013). Sodium as nutrient and toxicant. Plant and Soil, 369, 1–23. https://doi.org/10.1007/s11104-013-1801-2
Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1–22. https://doi.org/10.1016/j.geoderma.2004.01.032
Lancaster, S. H., Hollister, E. B., Senseman, S. A., & Gentry, T. J. (2010). Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Management Science, 66(1), 59–64. https://doi.org/10.1002/ps.1831
Langmaid, K. K. (1964). Some effects of earthworm invasion in virgin podzols. Canadian Journal of Soil Science, 44, 34–37.
Larsen, T., Schjønning, P., & Axelsen, J. (2004). The impact of soil compaction on euedaphic Collembola. Applied Soil Ecology, 26, 273–281.
Li, J., Ramirez, G. H., Kiani, M., Quideau, S., Smith, E., Janzen, H., Larney, F., & Puurveen, D. (2018). Soil organic matter dynamics in long-term temperate agroecosystems: Rotation and nutrient addition effects. Canadian Journal of Soil Science, 98, 232–245.
Liang, C., Amelung, W., Lehmann, J., & Kästner, M. (2019). Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 25, 3578–3590.
Lindo, Z. (2015). Warming favours small-bodied organisms through enhanced reproduction and compositional shifts in belowground systems. Soil Biology and Biochemistry, 91, 271–278.
Ma, X., Ni, X., Guo, Z., Zou, X., Chen, J., Shen, W., & Kuzyakov, Y. (2023). Nitrogen addition influences fine root growth and mycorrhizal symbiosis formation in trees with contrasting root morphology. Applied Soil Ecology, 189, 104987.
Markkula, I., Cornelissen, J. H. C. R., & Aerts, R. (2019). Sixteen years of simulated summer and winter warming have contrasting effects on soil mite communities in a sub-Arctic peat bog. Polar Biology, 42, 581–591.
McGill, W. B., & Spence, J. R. (1985). Soil fauna and soil structure: Feedbacks between size and architecture. Quaestiones Entomologicae, 21, 645–654.
Meehan, M. L., Turnbull, K. F., Sinclair, B. J., & Lindo, Z. (2022). Predators minimize energy costs, not maximize energy gains when feeding under warming: Evidence from a microcosm experiment. Functional Ecology, 36, 2279–2288.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z. S., Cheng, K., Das, B. S. et al. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86.
Newbold, T., Hudson, L. N., Hill, S. L. L., & Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520, 45–50. https://doi.org/10.1038/nature14324
Newman, M. M., Hoilett, N., Lorenz, N., Dick, R. P., Liles, M. R., Ramsier, C., & Kloepper, J. W. (2016). Glyphosate effects on soil rhizosphere-associated bacterial communities. Science of the Total Environment, 543, 155–160. https://doi.org/10.1016/j.scitotenv.2015.11.008
Nicolescu, V.-N., Rédei, K., Vor, T., Bastien, J.-C., Brus, R., Benčať, T., Đodan, M., Cvjetković, B., Andrašev, S., La Porta, N., Lavnyy, V., Petkova, K., Perić, S., Bartlett, D., Hernea, C., Pástor, M., Mataruga, M., Podrázský, V., Sfeclă, V., & Štefančík, I. (2020). A review of black walnut (Juglans nigra L.) ecology and management in Europe. Trees, 34, 1087–1112.
Oades, J. M. (1984). Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil, 76, 319–337.
Omuto, C. T., Kome, G. K., Ramakhanna, S. J., Muzira, N. M., Ruley, J. A., Jayeoba, O. J., … & Nyamai, M. (2024). Trend of soil salinization in Africa and implications for agro-chemical use in semi-arid croplands. Science of the Total Environment, 951, 175503.
Orgiazzi, A., Bardgett, R. D., & Barrios, E. (2016a). Global Soil Biodiversity Atlas. European Commission.
Orgiazzi, A., Panagos, P., Yugini, Y., Dunbar, M. B., Gardi, C., Montanarella, L., & Ballabio, C. (2016b). A knowledge-based approach to estimating the magnitude and spatial patterns of potential threats to soil biodiversity. Science of the Total Environment, 545–546, 11–20.
Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. In Dar et al. (Eds.), Microbiota and Biofertilizers (Vol. 2, pp. 1–20). Springer. https://doi.org/10.1007/978-3-030-61010-4_1
Palacino, B., Ascaso, S., Valero, A., & Valero, A. (2024). Regeneration costs of topsoil fertility: An exergy indicator of agricultural impacts. Journal of Environmental Management, 369, 122297.
Pereira, M. C., O’Riordan, R., & Stevens, C. (2021). Urban soil microbial community and microbial-related carbon storage are severely limited by sealing. Journal of Soils and Sediments, 21, 1455–1465.
Philippot, L., Chenu, C., Kappler, A., Rillig, M. C., & Fierer, N. (2024). The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 22, 226–239.
Porre, R. J., van Groenigen, J. W., De Deyn, G. B., de Goede, R. G. M., & Lubbers, I. M. (2016). Exploring the relationship between soil mesofauna, soil structure and N₂O emissions. Soil Biology and Biochemistry, 96, 55–64.
Potapov, A. M., Drescher, J., Darras, K., Wenzel, A., Janotta, N., Nazarreta, R., Kasmiatun, Laurent, V., Mawan, A., Utari, E. H., et al. (2024). Rainforest transformation reallocates energy from green to brown food webs. Nature, 627, 116–127.
Potapov, A. M., Klarner, B., Sandmann, D., Widyastuti, R., & Scheu, S. (2019). Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. Journal of Animal Ecology, 88, 1845–1859.
Powlson, D. S., Gregory, P. J., Whalley, W. R., Quinton, J. N., Hopkins, D. W., Whitmore, A. P., Hirsch, P. R., & Goulding, K. W. T. (2011). Soil management in relation to sustainable agriculture and ecosystem services. Food Policy, 36, S72–S87.
Qiu, L., Zhang, Q., Zhu, H., Reich, P. B., Banerjee, S., van der Heidjen, M. G. A., Sadowsky, M. J., Ishii, S., Jia, X., Shao, M., Liu, B., Jiao, H., Li, H., & Wei, X. (2021). Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME, 15, 2474–2489.
Reinhart, K. O., & Callaway, R. M. (2006). Soil biota and invasive plants. New Phytologist, 170, 445–457. https://doi.org/10.1111/j.1469-8137.2006.01715.x
Rezapour, S., Nouri, A., Asadzadeh, F., Barin, M., Erpul, G., Jagadamma, S., & Qin, R. (2023). Combining chemical and organic treatments enhances remediation performance and soil health in saline-sodic soils. Communications Earth & Environment, 4, 285. https://doi.org/10.1038/s43247-023-00948-6
Rillig, M. C., Masahiro, R., Lehmann, A., Aguilar-Trigueros, C. A., Buchert, S., Wulf, A., Iwasaki, A., Roy, J., & Yang, G. (2019). The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366, 886–890. https://doi.org/10.1126/science.aay2832
Rinke, A., Kuhry, P., & Dethloff, K. (2008). Importance of a soil organic layer for Arctic climate: A sensitivity study with an Arctic RCM. Geophysical Research Letters, 35, L13709.
Rousk, J., Smith, A. R., & Jones, D. L. (2013). Investigating the long-term legacy of drought and warming on the soil microbial community across five European shrubland ecosystems. Global Change Biology, 19, 3872–3884.
Scalenghe, R., & Marsan, F. A. (2009). The anthropogenic sealing of soils in urban areas. Landscape and Urban Planning, 90, 1–10.
Semple, K. T., Morriss, A. W. J., & Paton, G. I. (2003). Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. European Journal of Soil Science, 54, 809–818. https://doi.org/10.1046/j.1351-0754.2003.0564.x
Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79, 7–31.
Soana, E., Vincenzi, F., Colombani, N., Mastrocicco, M., Fano, E. A., & Castaldelli, G. (2022). Soil denitrification, the missing piece in the puzzle of nitrogen budget in lowland agricultural basins. Ecosystems, 25, 633–647.
Solly, E. F., Weber, V., Zimmermann, S., Walthert, L., Hagedorn, F., & Schmidt, M. W. I. (2020). A critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in Swiss Forest soils. Frontiers in Forests and Global Change, 3, 98. https://doi.org/10.3389/ffgc.2020.00098
Sperow, M. (2020). What might it cost to increase soil organic carbon using no-till on U.S. cropland? Carbon Balance and Management, 15, 26. https://doi.org/10.1186/s13021-020-00162-3
Standen, K. M., & Baltzer, J. L. (2021). Permafrost condition determines plant community composition and community-level foliar functional traits in a boreal peatland. Ecology and Evolution, 11, 10133–10146. https://doi.org/10.1002/ece3.7818
Stevenson, F. J. (1982). Humus chemistry. Wiley.
Tibbett, M., Gil-Martínez, M., Fraser, T., Green, I. D., Duddigan, S., de Oliveira, V. H., Raulund-Rasmussen, K., Sizmur, T. A., & Díaz, A. (2019). Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration. Catena, 180, 401–415.
Tibbett, M., Fraser, T. D., & Duddigan, S. (2020). Identifying potential threats to soil biodiversity. PeerJ, 8, e9271. https://doi.org/10.7717/peerj.9271
Turnbull, M. S., & Lindo, Z. (2015). Combined effects of abiotic factors on Collembola communities reveal precipitation may act as a disturbance. Soil Biology and Biochemistry, 82, 36–43.
van der Putten, W., Klironomos, J., & Wardle, D. (2007). Microbial ecology of biological invasions. ISME Journal, 1, 28–37. https://doi.org/10.1038/ismej.2007.9
Wagg, C., Bender, S. F., Widmer, F., & Van Der Heijden, M. G. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 111(14), 5266–5270.
Wall, D. H., Bardgett, R. D., Behan-Pelletier, V., Herrick, J. E., Jones, T. H., Six, J., ... & Ritz, K. (Eds.). (2012). Soil ecology and ecosystem services. OUP Oxford.
Wan, B., Liu, T., Gong, X., Zhang, Y., Li, C., Chen, X., Hu, F., Griffiths, B. S., & Liu, M. (2022). Energy fluxes across multitrophic levels drive ecosystem multifunctionality: Evidence from nematode food webs. Soil Biology and Biochemistry, 169, 108656.
Wang, B., An, S., Liang, C., Liu, Y., & Kuzyakov, Y. (2021). Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology and Biochemistry, 162, 108422.
Wei, Z., Wu, S., Zhou, S., & Lin, C. (2013). Installation of impervious surface in urban areas affects microbial biomass, activity (potential C mineralisation), and functional diversity of the fine earth. Soil Research, 51(1), 59–67.
Wu, H., Cui, H., Fu, C., Li, R., Qi, F., Liu, Z., Yang, G., Xiao, K., & Qiao, M. (2024). Unveiling the crucial role of soil microorganisms in carbon cycling: A review. Science of the Total Environment, 909, 168627.
Zhang, L., Zhao, Z., Jiang, B., Baoyin, B., Cui, Z., Wang, H., Li, Q., & Cui, J. (2024). Effects of long-term application of nitrogen fertilizer on soil acidification and biological properties in China: A meta-analysis. Microorganisms, 12(7), 1683.
Zhang, H., Wang, L., Fu, W., Xu, C., Zhang, H., Xu, X., Ma, H., Wang, J., & Zhang, Y. (2024). Soil acidification can be improved under different long-term fertilization regimes in a sweetpotato–wheat rotation system. Plants, 13(13), 1740.
Zhang, Z., Qiao, M., Li, D., Yin, H., & Liu, Q. (2016). Do warming-induced changes in quantity and stoichiometry of root exudation promote soil N transformations via stimulation of soil nitrifiers, denitrifiers and ammonifiers? European Journal of Soil Biology, 74, 60–68.
Zheng, J., Guo, R., Li, D., Zhang, J., & Han, S. (2017). Nitrogen addition, drought and mixture effects on litter decomposition and nitrogen immobilization in a temperate forest. Plant and Soil, 416, 165–179.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zoë Lindo, Jeff Battigelli, J. Jacob Parnell, Peter de Ruiter, George G. Brown, Carlos Barreto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Soil Organisms is committed to fair open access publishing. All articles are available online without publication fees. Articles published from Vol. 96 No. 3 (2024) onwards are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Articles published from Vol. 80 No. 1 through Vol. 96 No. 2 are available under the previous terms, allowing non-commercial, private, and scientific use.