A bibliometric analysis on soil microbial diversity and processes: global trends and methodologies
DOI:
https://doi.org/10.25674/423Keywords:
Biodiversity, Microorganisms, PublicationsAbstract
Soil is Earth’s most biodiverse habitat, harboring a multitude of microbial species. Several efforts have been conducted to survey the diversity of these microbial communities in the last decades. Still, a comprehensive overview of the literature highlighting significant topics and key players was needed. We carried out a bibliometric analysis of the literature on soil microorganisms and processes between 2011 and 2022, aiming to identify research trends, methodologies, and gaps in knowledge on soil microorganisms. A database was developed in PostgreSQL and connected with the R statistical program, enabling literature review data analysis through 227 SQL customized queries. The data retrieved from the database was analyzed using R and Excel. Bacteria and fungi were the most studied among soil microorganisms, accounting for 78% and 90% of the articles and patents in the databases, respectively. China and the USA were the leading nations studying soil microbial diversity and processes. These countries were also at the forefront of applying advanced molecular methods (e.g., omics). Most other top publishers were from developed countries, especially Europe, or large developing economies such as India and Brazil. Other developing nations, such as Argentina, Egypt, Iran, Mexico, Pakistan, and the Philippines, were among the top publishers in agriculture-related topics. Altogether, the results show that groups other than bacteria and fungi are understudied, that a few countries dominate the research output on soil microbes, and that countries from Latin America, Africa, and Asia are underrepresented, highlighting the need to invest in soil microbiology science in these regions.
Downloads
References
Adhikari, K., & Hartemink, A. E. (2016). Linking soils to ecosystem services—A global review. Geoderma, 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009
Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59(1), 143–169. https://doi.org/10.1128/mr.59.1.143-169.1995
American Society for Microbiology. (2023). The role of microbes in mediating methane emissions. American Society for Microbiology. http://www.ncbi.nlm.nih.gov/books/NBK598985/
Anthony, M. A., Bender, S. F., & van der Heijden, M. G. A. (2023). Enumerating soil biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 120, e2304663120. https://doi.org/10.1073/pnas.2304663120
Attwood, T. K., Blackford, S., Brazas, M. D., Davies, A., & Schneider, M. V. (2019). A global perspective on evolving bioinformatics and data science training needs. Briefings in Bioinformatics, 20(2), 398–404. https://doi.org/10.1093/bib/bbx100
Baldrian, P. (2017). Microbial activity and the dynamics of ecosystem processes in forest soils. Current Opinion in Microbiology, 37, 128–134. https://doi.org/10.1016/j.mib.2017.06.008
Banerjee, S., & van der Heijden, M. G. A. (2023). Soil microbiomes and One Health. Nature Reviews Microbiology, 21, 6–20. https://doi.org/10.1038/s41579-022-00779-w
Bräuer, S. L., Basiliko, N., Siljanen, H. M. P., & Zinder, S. H. (2020). Methanogenic archaea in peatlands. FEMS Microbiology Letters, 367, fnaa172. https://doi.org/10.1093/femsle/fnaa172
Cassán, F., Coniglio, A., López, G., Molina, R., Nievas, S., de Carlan, C. L. N., Donadio, F., Torres, D., Rosas, S., Pedrosa, F. O., de Souza, E., Zorita, M. D., de-Bashan, L., & Mora, V. (2020). Everything you must know about Azospirillum and its impact on agriculture and beyond. Biology and Fertility of Soils, 56, 461–479. https://doi.org/10.1007/s00374-020-01463-y
Conrad, R., Erkel, C., & Liesack, W. (2006). Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Current Opinion in Biotechnology, 17, 262–267. https://doi.org/10.1016/j.copbio.2006.04.002
Cordero, I., Snell, H., & Bardgett, R. D. (2019). High throughput method for measuring urease activity in soil. Soil Biology and Biochemistry, 134, 72–77. https://doi.org/10.1016/j.soilbio.2019.03.014
FAO, ITPS, GSBI, SCBD, & EC. (2020). State of knowledge of soil biodiversity – Status, challenges and potentialities. Summary for policy makers. FAO. https://policycommons.net/artifacts/1526136/state-of-knowledge-of-soil-biodiversity-status-challenges-and-potentialities/2214245/
Fierer, N. (2017). Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15, 579–590. https://doi.org/10.1038/nrmicro.2017.87
Figueiredo, L. H. M., Vasconcellos, A. G., Souza Prado, G., & Grossi-de-Sá, M. (2019). An overview of intellectual property within agricultural biotechnology in Brazil. Biotechnology Research and Innovation, 3, 100017. https://doi.org/10.1016/j.biori.2019.04.003
Florêncio, M. N. da S., Abud, A. K. de S., Costa, B. M. G., & Oliveira Junior, A. M. (2020). The sectoral dynamics of the protection of biotechnology in Brazil. World Patent Information, 62, 101984. https://doi.org/10.1016/j.wpi.2020.101984
Gupta, A., Singh, U. B., Sahu, P. K., Paul, S., Kumar, A., Malviya, D., Singh, S., Kuppusamy, P., Singh, P., Paul, D., et al. (2022). Linking soil microbial diversity to modern agriculture practices: A review. International Journal of Environmental Research and Public Health, 19(5), 3141. https://doi.org/10.3390/ijerph19053141
International Monetary Fund. (2024). GDP, current prices. Billions of U. S. Dollars. https://www.imf.org/external/datamapper/NGDPD@WEO/OEMDC/ADVEC/WEOWORLD
Iqbal, S., Begum, F., Ullah, I., Jalal, N., & Shaw, P. (2024). Peeling off the layers from microbial dark matter (MDM): Recent advances, future challenges, and opportunities. Critical Reviews in Microbiology, 51(1), 1–21. https://doi.org/10.1080/1040841X.2024.2319669
Hall, B. H. (2007). Patents and patent policy. Oxford Review of Economic Policy, 23, 568–587. https://doi.org/10.1093/oxrep/grm037
Kimura, M., Jia, Z.-J., Nakayama, N., & Asakawa, S. (2008). Ecology of viruses in soils: Past, present and future perspectives. Soil Science and Plant Nutrition, 54, 1–32. https://doi.org/10.1111/j.1747-0765.2007.00197.x
Kirk, J. L., Beaudette, L. A., Hart, M., Moutoglis, P., Klironomos, J. N., Lee, H., & Trevors, J. T. (2004). Methods of studying soil microbial diversity. Journal of Microbiological Methods, 58(2), 169–188. https://doi.org/10.1016/j.mimet.2004.04.006
Kopittke, P. M., Minasny, B., Pendall, E., Rumpel, C., & McKenna, B. A. (2023). Healthy soil for healthy humans and a healthy planet. Critical Reviews in Environmental Science and Technology, 54(3), 210–221. https://doi.org/10.1080/10643389.2023.2228651
Kuila, D., & Ghosh, S. (2022). Aspects, problems and utilization of Arbuscular Mycorrhizal (AM) application as bio-fertilizer in sustainable agriculture. Current Research in Microbial Sciences, 3, 100107. https://doi.org/10.1016/j.crmicr.2022.100107
Lindo, Z., et al. (2024). The threat-work: A network of potential threats to soil biodiversity. Soil Organisms, 97, 31–46.
Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl, D. A. (2018). Brock biology of microorganisms (15th ed.). Pearson.
de Meis, L., Arruda, A. P., & Guimarães, J. (2007). The impact of science in Brazil. IUBMB Life, 59, 227–234. https://doi.org/10.1080/15216540701258140
de Mendiburu, F. (2023). agricolae: Statistical procedures for agricultural research (R package version 1.3-7). https://CRAN.R-project.org/package=agricolae
Nature. (2021). Superpowered science: Charting China’s research rise. Nature, 593, S4–S5. https://doi.org/10.1038/d41586-021-01403-2
Niva, C. C., Brown, G. G., Silva, O. D. D., Malaquias, J. V., Correia, M. E. F., Ferreira, T., Antunes, L. F. S., Oliveira, M. I. L., & Eugenio, N. R. (2024). Soil macrofauna worldwide: An analysis with data science tool. Soil Organisms, 97 (SI), 97–125.
Pratama, A. A., & van Elsas, J. D. (2018). The ‘neglected’ soil virome – Potential role and impact. Trends in Microbiology, 26, 649–662. https://doi.org/10.1016/j.tim.2017.12.004
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Roux, S., Matthijnssens, J., & Dutilh, B. E. (2021). Metagenomics in virology. In B. W. J. Mahy, M. H. V. Van Regenmortel (Eds.), Encyclopedia of virology (pp. 133–140). Academic Press. https://doi.org/10.1016/B978-0-12-809633-8.20957-6
Salami, R., & Soltanzadeh, J. (2012). Comparative analysis for science, technology and innovation policy; Lessons learned from some selected countries (Brazil, India, China, South Korea and South Africa) for other LDCs like Iran. Journal of Technology Management & Innovation, 7(1), 211–227. https://doi.org/10.4067/S0718-27242012000100014
Scarano, F. R. (2007). Perspectives on biodiversity science in Brazil. Scientia Agricola, 64(4), 439–447. https://doi.org/10.1590/S0103-90162007000400016
Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A., Blazewicz, S. J., Brodie, E. L., Firestone, M. K., Foley, M. M., Hestrin, R., Hungate, B. A., et al.(2022). Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nature Reviews Microbiology, 20, 415–430. https://doi.org/10.1038/s41579-022-00695-z
Stahl, D. A., & de la Torre, J. R. (2012). Physiology and diversity of ammonia-oxidizing archaea. Annual Review of Microbiology, 66, 83–101. https://doi.org/10.1146/annurev-micro-092611-150128
Telles, T. S., Nogueira, M. A., & Hungria, M. (2023). Economic value of biological nitrogen fixation in soybean crops in Brazil. Environmental Technology & Innovation, 31, 103158. https://doi.org/10.1016/j.eti.2023.103158
Timonen, S., & Bomberg, M. (2009). Archaea in dry soil environments. Phytochemistry Reviews, 8, 505–518. https://doi.org/10.1007/s11101-009-9137-5
UNESCO Institute for Statistics (UIS). (2024). Science, technology, and innovation. https://data.uis.unesco.org/Index.aspx?DataSetCode=SCN_DS&lang=en#
Wang, X., Tang, Y., Yue, X., Wang, S., Yang, K., Xu, Y., Shen, Q., Friman, V.-P., & Wei, Z. (2024). The role of rhizosphere phages in soil health. FEMS Microbiology Ecology, 100, fiae052. https://doi.org/10.1093/femsec/fiae052
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag. https://ggplot2.tidyverse.org
Wolińska, A., & Stępniewska, Z. (2012). Dehydrogenase activity in the soil environment. Dehydrogenases IntechOpen. https://doi.org/10.5772/48294
Woolston, C. (2023). What China’s leading position in natural sciences means for global research. Nature, 620, S2–S5. https://doi.org/10.1038/d41586-023-02159-7
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ederson da Conceição Jesus, Marcia Reed Rodrigues Coelho, Guilherme Montandon Chaer, Ieda de Carvalho Mendes, Maria Inês Lopes de Oliveira, Juaci Vitória Malaquias, Ozanival Dario Dantas da Silva, Irene von der Weid Andrade Oliveira, Natália Rodríguez Eugenio, George Gardner Brown

This work is licensed under a Creative Commons Attribution 4.0 International License.
Soil Organisms is committed to fair open access publishing. All articles are available online without publication fees. Articles published from Vol. 96 No. 3 (2024) onwards are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Articles published from Vol. 80 No. 1 through Vol. 96 No. 2 are available under the previous terms, allowing non-commercial, private, and scientific use.