Knowledge on soil invertebrate macrofauna and bioturbating vertebrates: a global analysis using data science tools
DOI:
https://doi.org/10.25674/427Keywords:
animals, soil biodiversity, macroinvertebrates, research methods, bibliographic databaseAbstract
Soil fauna support life aboveground, are important for terrestrial ecosystems and are crucial for soil health and plant-protection. Approximately 23% of all known species are animals associated with soils, but there are many taxa with a low proportion of described species. The soil macrofauna, i.e., the invertebrates visible with the naked eye, include ca. 500 thousand species belonging to seven phyla and 47 taxonomic groups, while the soil megafauna are vertebrates that live, feed, nest in the soil or find refuge there. In the present study we evaluate knowledge and expertise on large soil fauna at country and global level, by assessing the most studied taxa, potential uses and study/sampling methods using bibliographic information and data science tools. We applied customized queries and a database in PostgreSQL connected with the R statistical program, to identify worldwide scientific output as a proxy for expertise in various subtopics covering eight macroinvertebrate taxa (ants, beetles, centipedes, earthworms, millipedes, spiders, termites) and nearly 60 megafauna taxa belonging to four Classes. Publications associated with author’s country affiliations,
were retrieved from Web of Science between 2011 and 2022 (macrofauna) and 2014 and 2023 (megafauna). Knowledge on soil macro and megafauna was not evenly distributed among the countries and even within the same continent. Regionally, authors affiliated to China, India, Australia, the USA, Brazil, South Africa, France, United Kingdom, Germany and Italy published the most depending on the macrofauna taxon and subtopic. Earthworms were the most studied soil macroinvertebrate worldwide and soil macrofauna were widely used as bioindicators, while bioturbating vertebrate publications were mainly from authors affiliated to USA, China, Australia and Brazil and primarily on rodents and reptiles. Especially in the African continent a major knowledge gap was identified in all aspects of the present analysis. There is a clear need for further work on soil fauna as well as a collaborative a coordinated effort to promote investment and capacity building in the countries lacking expertise, aiming to improve sustainable soil management and use and the long-term conservation of soil biodiversity.
Downloads
References
Afreen, S., & Shaikh, A. (2020). Therapeutic uses of earthworm–a review. International Journal of Advanced Ayurveda, Yoga, Unani, Siddha and Homeopathy, 9(1), 571–580.
Aguiar, A. P., Deans, A. R., Engel, M. S., Forshage, M., Huber, J. T., Jennings, J. T., Johnson, N. F., Lelej, A. S., Longino, J. T., Lohrmann, V., et al. (2013). Order Hymenoptera. Zootaxa, 3703(1), 1–82.
Albertson, L. K., Sklar, L. S., Tumolo, B. B., Cross, W. F., Collins, S. F., & Woods, H. A. (2024). The ghosts of ecosystem engineers: Legacy effects of biogenic modifications. Functional Ecology, 38(1), 52–72.
Ali, S. M., Khan, N. A., Sagathevan, K., Anwar, A., & Siddiqui, R. (2019). Biologically active metabolite(s) from haemolymph of red-headed centipede Scolopendra subspinipes possess broad spectrum antibacterial activity. AMB Express, 9(1), 95.
AmphibiaWeb. (2024). AmphibiaWeb. University of California, Berkeley. https://amphibiaweb.org
Anderson, J. M., & Ingram, J. S. I. (1993). Tropical soil biology and fertility: A handbook of methods (2nd ed., pp. 62–65). CAB International.
Anjos, D. V., Tena, A., Viana-Junior, A. B., Carvalho, R. L., Torezan-Silingardi, H., Del-Claro, K., & Perfecto, I. (2022). The effects of ants on pest control: A meta-analysis. Proceedings of the Royal Society B, 289(1981), 20221316.
Anthony, M. A., Bender, S. F., & van der Heijden, M. G. A. (2023). Enumerating soil biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 120, e2304663120.
Antoniolli, Z. I., Conceição, P. C., Böck, V., Port, O., da Silva, D. M., & da Silva, R. F. (2006). Método alternativo para estudar a fauna do solo. Ciência Florestal, 16(4), 407–417.
Antunes, L. F. D. S., Scoriza, R. N., Silva, D. G. D., & Correia, M. E. F. (2016). Production and efficiency of organic compost generated by millipede activity. Ciência Rural, 46, 815–819.
ANTWEB. (2024). ANTWEB (Version 8.106.1). California Academy of Sciences. https://www.antweb.org
Ashton, D. H., & Bassett, O. D. (1997). The effects of foraging by the superb lyrebird (Menura novaehollandiae) in Eucalyptus regnans forests at Beenak, Victoria. Austral Ecology, 22(4), 383–394.
Assis, A. B., Bevier, C. R., Chaves Barreto, C., & Navas, C. A. (2020). Environmental influences on and antimicrobial activity of the skin microbiota of Proceratophrys boiei (Amphibia, Anura) across forest fragments. Ecology and Evolution, 10, 901–913.
Bach, E. M., Ramirez, K. S., Fraser, T. D., & Wall, D. H. (2020). Soil biodiversity integrates solutions for a sustainable future. Sustainability, 12(7), 2662.
Badikova, A. A., & Dzerzhinsky, F. Y. (2014). [Functional morphology and adaptations of the jaw apparatus in puffins Fraterculini, Alcidae, Charadriiformes]. Zoological Journal, 93(10), 1210. (In Russian)
Bartz, M. L. C., Dudas, R. T., Demetrio, W. C., & Brown, G. G. (2024). Earthworms as soil health indicators in no-tillage agroecosystems. European Journal of Soil Biology, 121, 103605.
Baruzzi, C., & Krofel, M. (2017). Friends or foes? Importance of wild ungulates as ecosystem engineers for amphibian communities. North-Western Journal of Zoology, 13(2), 320–325.
Beaumelle, L., Thouvenot, L., Hines, J., Jochum, M., Eisenhauer, N., & Phillips, H. R. (2021). Soil fauna diversity and chemical stressors: A review of knowledge gaps and roadmap for future research. Ecography, 44(6), 845–859.
Beccaloni, G. (2014). Cockroach Species File Online (Version 5.0/5.0). http://Cockroach.SpeciesFile.org (Accessed 14 September 2024)
Beccaloni, G., Scoble, M., Kitching, I., Simonsen, T., Robinson, G., Pitkin, B., Hine, A., Lyal, C., Ollerenshaw, J., Wing, P., & Hobern, D. (2024). Global Lepidoptera Index (D. Hobern, Ed.; Version 1.1.24.134). https://doi.org/10.48580/dg6lk-49xk
Beck, H., Thebpanya, P., & Filiaggi, M. (2010). Do Neotropical peccary species (Tayassuidae) function as ecosystem engineers for anurans? Journal of Tropical Ecology, 26, 407–414.
Benavides, L. R., Cosgrove, J. G., Harvey, M. S., & Giribet, G. (2019). Phylogenomic interrogation resolves the backbone of the Pseudoscorpiones tree of life. Molecular Phylogenetics and Evolution, 139, 106509.
Berman, D. I., Bulakhova, N. A., Meshcheryakova, E. N., Rogulenko, V., & Shishikina, K. I. (2023). Pallas’ spadefoot, Pelobates vespertinus (Pallas 1771) (Amphibia, Pelobatidae), the second amphibian species to tolerate extreme hypoxia. Zoologičeskij žurnal, 102, 1028–1045. (In Russian)
Billerman, S. M., Keeney, B. K., Rodewald, P. G., & Schulenberg, T. S. (Eds.). (2022). Birds of the World. Cornell Laboratory of Ornithology. https://birdsoftheworld.org/bow/home
Bicha, W. J. (2018). Biodiversity of Mecoptera. In R. G. Foottit & P. H. Adler (Eds.), Insect Biodiversity: Science and Society (Vol. II, pp. 705–720). John Wiley & Sons.
Blouin, M., Barrere, J., Meyer, N., Lartigue, S., Barot, S., & Mathieu, J. (2019). Vermicompost significantly affects plant growth: A meta-analysis. Agronomy for Sustainable Development, 39, 1–15.
Bonato, L., Chagas Junior, A., Edgecombe, G. D., Lewis, J. G. E., Minelli, A., Pereira, L. A., Shelley, R. M., Stoev, P., & Zapparoli, M. (2016). ChiloBase 2.0 – A world catalogue of centipedes (Chilopoda). https://chilobase.biologia.unipd.it
Botero-Trujillo, R., Sain, C. E., & Prendini, L. (2021). Systematics of the „giant“ Ricinulei (Ricinoididae: Ricinoides) of West Africa: With descriptions of five new species and comparative morphology of the male copulatory apparatus. Bulletin of the American Museum of Natural History, 448, 1–68.
Braude, S., Holtze, S., Begall, S., Brenmoehl, J., Burda, H., Dammann, P., del Marmol, D., Gorshkova, E., Henning, Y., Hoeflich, A., Höhn, A., Jung, T., Hamo, D., Sahm, A., Shebzukhov, Y., Šumbera, R., Miwa, S., Vyssokikh, M. Y., von Zglinicki, T., Averina, O., & Hildebrandt, T. B. (2021). Surprisingly long survival of premature conclusions about naked mole-rat biology. Biological Reviews, 96, 376–393.
Brown, G. G., Silva, E., Thomazini, M. J., Niva, C. C., Decaëns, T., Cunha, L. F. N., Nadolny, H., Demetrio, W. C., Santos, A., Ferreira, T., et al. (2018). The role of soil fauna in soil health and delivery of ecosystem services. In D. Reicosky (Ed.), Managing soil health for sustainable agriculture (Vol. 1, pp. 197–241). Burleigh Dodds Science Publishing.
Brown, G. G., & Gabriac, Q. (2021). Fauna edáfica e epiedáfica em Florestas com Araucária. In V. A. Sousa, E. Fritzsons, J. E. Pinto Júnior, & A. V. Aguiar (Eds.), Araucária: Pesquisa e desenvolvimento no Brasil (pp. 121–147). Embrapa.
Brown, G., Ferreira, T., Correia, M. E. F., Niva, C. C., Jesus, E. C., Oliveira, M. I. L., Antunes, L. F. S., Parron, L., Coelho, M. R. R., Chaer, G. M., et al. (2025). Soil biodiversity knowledge and use worldwide: Results from a global survey. Soil Organisms, 97(SI): 7–31.
Brown, G. G., Demetrio, W. C., Gabriac, Q., Pasini, A., Korasaki, V., Oliveira, L. J., dos Santos, J. C. F., Torres, E., Galerani, P. R., & Gazziero, D. L. P., et al. (2024). Soil macrofauna communities in Brazilian land-use systems. Biodiversity Data Journal, 12, e115000.
Brown, G. G., James, S. W., Csuzdi, C., Lapied, E., Decaëns, T., Reynolds, J. W., Misirlioğlu, M., Stovanić, M., Trakić, T., Sekulić, J., et al. (2024). A checklist of megadrile earthworm (Annelida: Clitellata) species and subspecies of the world [Data set]. Zootaxa, 5255, 417–438. https://doi.org/10.5281/zenodo.1234567 (Platzhalter für DOI)
Brown, G. R., & Matthews, I. M. (2016). A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground‐active arthropod biodiversity. Ecology and Evolution, 6(12), 3953–3964.
Bueno, C. G., & Jiménez, J. J. (2014). Livestock grazing activities and wild boar rooting affect alpine earthworm communities in the Central Pyrenees (Spain). Applied Soil Ecology, 83, 71–78. https://doi.org/10.1016/j.apsoil.2014.04.013
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., De Goede, R. (2018). Soil quality – A critical review. Soil Biology and Biochemistry, 120, 105–125.
Cheik, S., Harit, A., Bottinelli, N., & Jouquet, P. (2022). Bioturbation by dung beetles and termites: Do they similarly impact soil and hydraulic properties? Pedobiologia, 95, 150845.
Chen, C. H., & Lu, T. K. (2020). Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics, 13(1), 24.
Cigliano, M. M., Braun, H., Eades, D. C., & Otte, D. (2024). Gryllidea Vickery: 1977. Orthoptera Species File. http://orthoptera.speciesfile.org/otus/828878/overview
Cividanes, F. J. (2021). Carabid beetles (Coleoptera: Carabidae) and biological control of agricultural pests in Latin America. Annals of the Entomological Society of America, 114(2), 175–191.
Clemente, C. J., Cooper, C. E., Withers, P. C., Freakley, C., Singh, S., & Terrill, P. (2016). The private life of echidnas: Using accelerometry and GPS to examine field biomechanics and assess the ecological impact of a widespread, semi-fossorial monotreme. Journal of Experimental Biology, 219, 3271–3283.
Clerici, G. P., Rosa, P. S., & Costa, F. R. (2018). Description of digging behavior in armadillos Dasypus novemcinctus (Xenarthra: Dasypodidae). Mastozoología Neotropical, 25(2), 283–291.
Clouse, R. M., Branstetter, M. G., Buenavente, P., Crowley, L. M., Czekanski-Moir, J., General, D. E. M., Giribet, G., Harvey, M. S., Janies, D. A., Mohagan, A. B., Mohagan, D. P., Sharma, P. P., & Wheeler, W. C. (2017). First global molecular phylogeny and biogeographical analysis of two arachnid orders (Schizomida and Uropygi) supports a tropical Pangean origin and mid-Cretaceous diversification. Journal of Biogeography, 44(11), 2660–2672.
Coelho, A. J. P., Magnago, L. F. S., Matos, F. A. R., Mota, N. M., Diniz, É. S., & Meira-Neto, J. A. A. (2020). Effects of anthropogenic disturbances on biodiversity and biomass stock of Cerrado, the Brazilian savanna. Biodiversity and Conservation, 29, 3151–3168.
Coleman, M. C., Parkes, J. P., & Walker, K. J. (2001). Impact of feral pigs and other predators on macro-invertebrates, D‘Urville Island. Conservation Advisory Science Notes, No. 345. Department of Conservation.
Conway, C. J. (2018). Spatial and temporal patterns in population trends and burrow usage of burrowing owls in North America. Journal of Raptor Research, 52(2), 129–142.
Correia, M. E. F., Brown, G. G., Niva, C. C., Antunes, L. F. S., Ferreira, T., Oliveira, M. I. L., Malaquias, J. V., Silva, O. D. D., & Eugenio, N. R. (2024). State of global knowledge on soil micro and mesofauna biodiversity based on bibliographic study. Soil Organisms, 97 (SI): 79–96.
Courtney, G. W., Pape, T., Skevington, J. H., & Sinclair, B. J. (2017). Biodiversity of Diptera. In R. G. Foottit & P. H. Adler (Eds.), Insect biodiversity: Science and society (Vol. I, pp. 229–278). John Wiley & Sons.
Cunha, L., Brown, G. G., Stanton, D. W. G., Da Silva, E., Hansel, F. A., Jorge, G., McKey, D., Vidal-Torrado, P., Macedo, R. S., Velasquez, E., et al. (2016). Soil animals and pedogenesis: The role of earthworms in anthropogenic soils. Soil Science, 181(3–4), 110–125.
Darwin, C. R. (1881). The formation of vegetable mould through the action of worms with observations on their habits. London: Murray.
Davies, G. T. O., Kirkpatrick, J. B., Cameron, E. Z., Carver, S., & Johnson, C. N. (2019). Ecosystem engineering by digging mammals: Effects on soil fertility and condition in Tasmanian temperate woodland. Royal Society Open Science, 6, 180621.
Dean, W. R. J., & Milton, S. J. (1991). Disturbances in semi-arid shrubland and arid grassland in the Karoo, South Africa: Mammal diggings as germination sites. African Journal of Ecology, 29, 11–16.
Decaëns, T., Jiménez, J. J., Gioia, C., Measey, G. J., & Lavelle, P. (2006). The values of soil animals for conservation biology. European Journal of Soil Biology, 42, S23–S38.
Decaëns, T., Lavelle, P., & Jimenez, J. J. (2008). Priorities for conservation of soil animals. CABI Reviews, 18 pp.
Deepak, P., Dinesh, K. P., Nag, C., Ohler, A., Shanker, K., Souza, P. D., Prasad, V. K., & Ashadevi, J. S. (2024). Discovery and description of a new species of burrowing frog Sphaerotheca Günther, 1859 (Anura: Dicroglossidae) from the suburban landscapes of Bengaluru, India. Zootaxa, 5405, 381–410.
Deufel, A. (2017). Burrowing with a kinetic snout in a snake (Elapidae: Aspidelaps scutatus). Journal of Morphology, 278(12), 1706–1715.
Diamé, L., Rey, J.-Y., Vayssières, J.-F., Grechi, I., Chailleux, A., & Diarra, K. (2017). Ants: Major functional elements in fruit agro-ecosystems and biological control agents. Sustainability, 10(2), 23.
Dmitriev, D. A., Anufriev, G. A., Bartlett, C. R., Blanco-Rodríguez, E., Borodin, O. I., Cao, Y.-H., Deitz, L. L., Dietrich, C. H., Dmitrieva, M. O., El-Sonbati, S. A., et al. (2022). World Auchenorrhyncha Database. TaxonPages. https://hoppers.speciesfile.org/
Doody, J. S., Soennichsen, K. F., James, H., McHenry, C., & Clulow, S. (2021). Ecosystem engineering by deep nesting monitor lizards. Ecology, 102(4), e03271.
Duan, X., Xu, M., Zhou, Y., Yan, Z., Du, Y., Zhang, L., Zhang, C., Bai, L., Nie, J., Chen, G., & Li, F. (2016). Effects of soil properties on copper toxicity to earthworm Eisenia fetida in 15 Chinese soils. Chemosphere, 145, 185–192.
EDB. Enterprisedb. PostgreSQL. https://www.enterprisedb.com/docs/supported-open-source/postgresql/
FAO. (2020). State of knowledge of soil biodiversity – Status, challenges and potentialities. Summary for policy makers. FAO, Rome, Italy.
FAO. Country profiles. https://www.fao.org/countryprofiles/en/
Fleming, P. A., Anderson, H., Prendergast, A. S., Bretz, M. R., Valentine, L. E., & Hardy, G. E. S. (2013). Is the loss of Australian digging mammals contributing to a deterioration in ecosystem function? Mammal Review, 44(2), 94–108.
Fonte, S. J., Botero, C., Quintero, D. C., Lavelle, P., & Van Kessel, C. (2019). Earthworms regulate plant productivity and the efficacy of soil fertility amendments in acid soils of the Colombian Llanos. Soil Biology and Biochemistry, 129, 136–143.
Fontes, B. L., Desbiez, A. L. J., Massocato, G. F., Srbek-Araujo, A. C., Sanaiotti, T. M., Bergallo, H. G., Ferreguetti, A. C., Noia, C. H. R., Schettino, V. R., Valls, R., et al. (2020). The local extinction of one of the greatest terrestrial ecosystem engineers, the giant armadillo (Priodontes maximus), in one of its last refuges in the Atlantic Forest, will be felt by a large vertebrate community. Global Ecology and Conservation, 24, e01357.
Gill, F., Donsker, D., & Rasmussen, P. (Eds.). (2024). IOC World Bird List (v14.1).
Golovatch, S. I., & Liu, W. (2020). Diversity, distribution patterns, and fauno-genesis of the millipedes (Diplopoda) of mainland China. ZooKeys, 930, 153.
Gotsch, S. G., Nadkarni, N., & Amici, A. (2016). The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. Journal of Tropical Ecology, 32, 455–468.
Guerra, C. A., Buschart, A. H., Sikorski, J.,, Chatzinotas, A., Guerrero-Ramírez, N., Cesarz, S., Beaumelle, L., Rillig, M.C., Maestre, F.T., Delgado-Baquerizo, M., et al. (2020). Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 11, 3870.
Guglielmone, A. A., Petney, T. N., & Robbins, R. G. (2020). Ixodidae (Acari: Ixodoidea): Descriptions and redescriptions of all known species from 1758 to December 31, 2019. Zootaxa, 4871, 1–322.
Gunstone, T., Cornelisse, T., Klein, K., Dubey, A., & Donley, N. (2021). Pesticides and soil invertebrates: A hazard assessment. Frontiers in Environmental Science, 9, 643847.
Haynes, G. (2012). Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology, 157-158, 99–107.
Heděnec, P., Jiménez, J. J., Moradi, J., Domene, X., Hackenberger, D., Barot, S., Frossard, A., Oktaba, L., Filser, J., Kindlmann, P., & Frouz, J. (2022). Global distribution of functional groups of soil fauna and their estimated litter consumption across biomes. Scientific Reports, 12(1), 17362.
Henry, T. J. (2017). Biodiversity of Heteroptera. In R. G. Foottit & P. H. Adler (Eds.), Insect Biodiversity: Science and society (Vol. I, pp. 279–335). Hoboken: John Wiley & Sons.
Hocking, D. J., & Babbitt, K. J. (2014). Amphibian contributions to ecosystem services. Herpetological Conservation and Biology, 9(1), 1–17.
Hodda, M. (2011). Phylum Nematoda Cobb, 1932. Zootaxa, 3148, 63–95.
Hohbein, R. R., & Conway, C. J. (2018). Pitfall traps: A review of methods for estimating arthropod abundance. Wildlife Society Bulletin, 42(4), 597–606.
Hole, F. D. (1981). Effects of animals on soils. Geoderma, 25(1–2), 75–112.
Hopkins, H. (2024a). Embioptera Species File. [https://embioptera.speciesfile.org]
Hopkins, H. (2024b). Mantophasmatodea Species File. [https://mantophasmatodea.speciesfile.org/]
Hopkins, H., Hass, F., & Deem, L. S. (2024). Dermaptera Species File. [https://dermaptera.speciesfile.org]
Hopkins, H., Johnson, K. P., & Smith, V. S. (2024). Psocodea Novak, 1890. Psocodea Species File.
International Organization for Standardization. (2011). ISO 23611–5: Soil quality—Sampling of soil invertebrates—Part 5: Sampling and extraction of soil macro-invertebrates.
IUCN. (2021). Summary statistics: The IUCN Red List of Threatened Species (Version 2021–1). IUCN. [https://www.iucnredlist.org/resources/summary-statistics]
Jackson, D. R., & Milstrey, E. G. (1989). The fauna of gopher tortoise burrows. In Proceedings of the gopher tortoise relocation symposium (p. 86–98). State of Florida, Game and Freshwater Fish Commission.
Jessop, T. S., Sumner, J., Rudiharto, H., Purwandana, D., Imansyah, M. J., & Phillips, J. A. (2004). Distribution, use and selection of nest type by Komodo Dragons. Biological Conservation, 117(5), 463–470.
Jesus, E. C., Coelho, M. R. R., Chaer, G. M., Mendes, I. C., Oliveira, M. I. L., Malaquias, J. V., Silva, O. D. D., von der Weid, I., Eugenio, N. R., & Brown, G. G. (2025). A bibliometric analysis on soil microbial diversity and processes: Global trends and methodologies. Soil Organisms (this issue).
Jiménez, J. J., Decaëns, T., Thomas, R. J., & Lavelle, P. (2001). Soil macrofauna: An available but little-known natural resource. In J. J. Jiménez & R. J. Thomas (Eds.), Nature’s plow: Soil macroinvertebrate communities in the neotropical savannas of Colombia (pp. 1–16). Centro Internacional de Agricultura Tropical (CIAT). (CIAT publication no. 324)
Jolly, J. N. (1989). A field study of the breeding biology of the little spotted kiwi (Apteryx owenii) with emphasis on the causes of nest failures. Journal of the Royal Society of New Zealand, 19, 433–448.
Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.
Joshi, A. P., Garshelis, D. L., & Smith, J. L. D. (1997). Seasonal and habitat-related diets of sloth bears in Nepal. Journal of Mammalogy, 78(2), 584–597.
Katandukila, J. V., Chimimba, C. T., Bennett, N. C., Makundi, R. H., Le Comber, S. C., & Faulkes, C. G. (2014). Sweeping the house clean: Burrow architecture and seasonal digging activity in the East African root rat from Tanzania. Journal of Zoology, 293, 271–280.
Khatri-Chhetri, R., Wang, H. C., Chen, C. C., Shih, H. C., Liao, H. C., Sun, C. M., Khatri-Chhetri, N., Wu, H. Y., & Pei, K. J. (2016). Surveillance of ticks and associated pathogens in free-ranging Formosan pangolins (Manis pentadactyla pentadactyla). Ticks and Tick-borne Diseases, 7(6), 1238–1244.
Kinlaw, A., & Grasmueck, M. (2012). Evidence for and geomorphologic consequences of a reptilian ecosystem engineer: The burrowing cascade initiated by the Gopher Tortoise. Geomorphology, 157, 108–121.
Koeppel, K. N., Schalkwyk, O. L., & Thompson, P. N. (2021). Patterns of rabies cases in South Africa between 1993 and 2019, including the role of wildlife. Transboundary and Emerging Diseases, 69(2), 836–848.
Krishna, K., South, E. J., Hopkins, H., Grimaldi, D. A., Krishna, V., & Engel, M. S. (2024). Isoptera Species File. In Bánki, O., Roskov, Y., Döring, M., Ower, G., Hernández Robles, D. R., Plata Corredor, C. A., ... Schalk, P. (Eds.), Catalogue of Life Checklist. [https://doi.org/10.48580/dg6lk-3gc]
Kristensen, J. A., Boëtius, S. H., Abekoe, M., Awadzi, T. W., & Breuning-Madsen, H. (2019). The combined effect of termite bioturbation and water erosion on soil nutrient stocks along a tropical forest catena in Ghana. Catena, 178, 307–312.
Kulkarni, S. S., Dosdall, L. M., & Willenborg, C. J. (2015). The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: A review. Weed Science, 63(2), 355–376.
Kurek, P., Kapusta, P., & Holeksa, J. (2014). Burrowing by badgers (Meles meles) and foxes (Vulpes vulpes) changes soil conditions and vegetation in a European temperate forest. Ecological Research, 29, 1–11.
Kury, A. B., Mendes, A. C., Cardoso, L., Kury, M. S., Granado, A. A., Yoder, M. J., & Kury, I. S. (2021). WCO-Lite version 1.1: An online nomenclatural catalog of harvestmen of the World (Arachnida, Opiliones) curated in TaxonWorks. Zootaxa, 4908(3), 447–450.
Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., Heal, O. W., & Ghillion, S. (1997). Soil function in a changing world: The role of invertebrate ecosystem engineers. European Journal of Soil Biology, 33, 159–193.
Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P. & Rossi, J. P. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42, S3–S15.
Lavelle, P., Mathieu, J., Spain, A., Brown, G., Fragoso, C., Lapied, E., Aquino, A., Barois, I., Barrios, E., Barros, M. E. (2022). Soil macroinvertebrate communities: A world‐wide assessment. Global Ecology and Biogeography, 31(7), 1261–1276.
Lindo, Z., Battigelli, J., Parnell, J. J., de Ruiter, P., Brown, G. G. & C. Barreto (2025). The threat-work: A network of potential threats to soil biodiversity. Soil Organisms, 97(SI), 31–46.
Liu, B., Zhao, P., Xu, P., Han, Y., Wang, Y., Chen, L., Wu, Z., & Yang, J. (2023). A comprehensive dataset of animal-associated sarbecoviruses. Scientific Data, 10(1), 681.
Liu, T., Chen, X., Gong, X., Lubbers, I. M., Jiang, Y., Feng, W., Li, X., Whalen, J. K., Bonkowski, M., Griffiths, B. S., Hu, F., & Liu, M. (2019). Earthworms coordinate soil biota to improve multiple ecosystem functions. Current Biology, 29(20), 3420–3429.e5. https://doi.org/10.1016/j.cub.2019.08.035
Lowry, J. K., & Myers, A. A. (2019). New genera of Talitridae in the revised Superfamily Talitroidea Bulycheva 1957 (Crustacea, Amphipoda, Senticaudata). Zootaxa, 4553(1), 1–100. https://doi.org/10.11646/zootaxa.4553.1.1
Maisey, A. C., Nimmo, D. G., & Bennett, A. F. (2018). Habitat selection by the Superb Lyrebird (Menura novaehollandiae), an iconic ecosystem engineer in forests of south-eastern Australia. Austral Ecology, 44(3), 503–513. https://doi.org/10.1111/aec.12683
Mammal Diversity Database. (2023). Mammal Diversity Database (Version 1.12.1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10595931
Marshall, J. C., Blessing, J. J., Clifford, S. E., Negus, P., & Steward, A. L. (2020). Epigeic invertebrates of pig-damaged, exposed wetland sediments are rooted: An ecological response to feral pigs (Sus scrofa). Aquatic Conservation, 30(12), 2207–2220. https://doi.org/10.1002/aqc.3415
Martín, J., Ortega, J., García-Roa, R., Jiménez-Robles, O., Rodríguez-Ruiz, G., Recio, P., & Cuervo, J. J. (2021). Going underground: Short- and long-term movements may reveal the fossorial spatial ecology of an amphisbaenian. Movement Ecology, 9, 14. https://doi.org/10.1186/s40462-021-00249-2
Mathieu, J., Lavelle, P., Brown, G. G., Eisenhauer, N., & Cooper, M. (2025). Global Soil Macrofauna. http://www.globalsoilmacrofauna.com/
Mendes, L. F. (2018). Biodiversity of the Thysanurans (Microcoryphia and Zygentoma). In R. G. Foottit & P. H. Adler (Eds.), Insect Biodiversity: Science and Society (Vol. II, pp. 155–198). John Wiley & Sons.
Meysman, F. J. R., Middelburg, J. J., & Heip, C. H. R. (2006). Bioturbation: A fresh look at Darwin‘s last idea. Trends in Ecology & Evolution, 21(12), 688–695. https://doi.org/10.1016/j.tree.2006.08.002
Miranda, G. S., Milleri-Pinto, M., Gonçalves-Souza, T., Giupponi, A. P. L., & Scharff, N. (2016). A new species of Charinus Simon 1892 from Brazil, with notes on behavior (Amblypygi, Charinidae). ZooKeys, 621, 15–36. https://doi.org/10.3897/zookeys.621.8721
Mitić, B., Borković-Mitić, S., Stojsavljević, A., Stojanović, D., Pavlović, S., Vasiljević, L., & Ristić, N. (2022). Metal and metalloid bioaccumulation in three centipedes (Chilopoda). Archives of Biological Sciences, 74(3), 207–215. https://doi.org/10.2298/ABS220621030M
Moleón, M., Sánchez-Zapata, J. A., Donázar, J. A., Revilla, E., Gutiérrez-Cánovas, C., Getz, W. M., Morales-Reyes, Z., Campos-Arceiz, A., Crowder, L. B., et al. (2020). Rethinking megafauna. Proceedings of the Royal Society B: Biological Sciences, 287, 20192643. https://doi.org/10.1098/rspb.2019.2643
MolluscaBase eds. (2024). MolluscaBase (ver. 05/2024). https://doi.org/10.48580/dg6lk-3cz
Mound, L. A. (2018). Biodiversity of Thysanoptera. In R. G. Foottit & P. H. Adler (Eds.), Insect Biodiversity: Science and Society (Vol. II, pp. 483–499). John Wiley & Sons.
Nikoukar, A., & Rashed, A. (2022). Integrated pest management of wireworms (Coleoptera: Elateridae) and the rhizosphere in agroecosystems. Insects, 13(9), 769. https://doi.org/10.3390/insects13090769
Niva, C. C., Niemeyer, J. C., Júnior, F. M. R. D. S., Nunes, M. E. T., De Sousa, D. L., Aragão, C. W. S., Sautter, K. D., Espindola, E. G., Sousa, J. P., & Römbke, J. (2016). Soil ecotoxicology in Brazil is taking its course. Environmental Science and Pollution Research, 23, 11363–11378. https://doi.org/10.1007/s11356-016-6585-7
Oliveira, I. S., Hering, L., & Mayer, G. (2024). Updated Onychophora checklist, 2021. http://www.onychophora.com/list.htm
Orgiazzi, A., Bardgett, R. D., Barrios, E., Behan-Pelletier, V., Briones, M. J. I., Chotte, J. L., De Beyn, G. B., Eggleton, P., Fierer, N., Fraser, T., et al. (2016). Global soil biodiversity atlas. European Union, Luxembourg.
Oswald, J. D., & Machado, R. J. P. (2018). Biodiversity of the Neuropterida (Insecta: Neuroptera, Megaloptera, and Raphidioptera). In R. G. Foottit & P. H. Adler (Eds.), Insect Biodiversity: Science and Society (Vol. II, pp. 627–671). John Wiley & Sons.
Parron, L. M., Ferreira, T., Malorgio, G., Bagnara, G. L., & Brown, G. G. (2025). A bibliometric analysis on economic valuation of ecosystem services provided by soil biodiversity. Soil Organisms, 97(SI), 47–64.
Pelosi, C., Barot, S., Capowiez, Y., Hedde, M., & Vandenbulcke, F. (2014). Pesticides and earthworms: A review. Agronomy for Sustainable Development, 34, 199–228. https://doi.org/10.1007/s13593-011-0025-8
Peña-Lastra, S. (2021). Seabird droppings: Effects on a global and local level. Science of The Total Environment, 754, 142148. https://doi.org/10.1016/j.scitotenv.2020.142148
Pérez-Rodríguez, J., Pekas, A., Tena, A., & Wäckers, F. L. (2021). Sugar provisioning for ants enhances biological control of mealybugs in citrus. Biological Control, 157, 104573. https://doi.org/10.1016/j.biocontrol.2021.104573
Platt, B. F. (2014). The foraging pits of the nine-banded armadillo, Dasypus novemcinctus (Mammalia: Xenarthra: Dasypodidae), and implications for interpreting conical trace fossils. Palaeontologia Electronica, 17(3.46A), 1–17. https://doi.org/10.26879/495
Platt, B. F., Kolb, D. J., Kunhardt, C. G., Milo, S. P., & New, L. G. (2016). Burrowing through the literature: The impact of soil-disturbing vertebrates on physical and chemical properties of soil. Soil Science, 181(3–4), 175–191. https://doi.org/10.1097/SS.0000000000000143
Poornima, S., Dadi, M., Subash, S., Manikandan, S., Karthik, V., Deena, S. R., Balachandar, R., Kumaran, S. K. N., & Subbaiya, R. (2024). A review on advances in toxic pollutants remediation by solid waste composting and vermicomposting. Scientific African, 21, e02100. https://doi.org/10.1016/j.sciaf.2024.e02100
Potapov, A. M., Sun, X., Barnes, A. D., Briones, M. J. I., Brown, G. G., Cameron, E. K., Chang, C.-H., Cortet, J., Eisenhauer, N., Franco, A. L. C., et al. (2022). Global monitoring of soil animal communities using a common methodology. Soil Organisms, 94, 55–68. https://doi.org/10.25674/so94iss1id285
Questad, E. J., & Foster, B. L. (2007). Vole disturbances and plant diversity in a grassland metacommunity. Oecologia, 153, 341–351.
Potapov, A. M., Drescher, J., Darras, K., et al. (2024). Rainforest transformation reallocates energy from green to brown food webs. Nature, 627, 116–122.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [https://www.R-project.org/]
Ratsiatosika, O., Razafindrakoto, M., Razafimbelo, T., Rabenarivo, M., Becquer, T., Bernard, L., Trap, J., & Blanchart, E. (2021). Earthworm inoculation improves upland rice crop yield and other agrosystem services in Madagascar. Agriculture, 11(1), 60.
Recuero, E., Etzler, F. E., & Caterino, M. S. (2023). Most soil and litter arthropods are unidentifiable based on current DNA barcode reference libraries. Current Zoology, zoad051.
Rein, J. O. (2017). The Scorpion Files. Trondheim: Norwegian University of Science and Technology. [https://www.ntnu.no/ub/scorpion-files/]
Retief, L., Bennett, N. C., Jarvis, J. U. M., & Bastos, A. D. S. (2017). Subterranean mammals: Reservoirs of infection or overlooked sentinels of anthropogenic environmental soiling? EcoHealth, 14, 662–674.
Risch, D. R., Ringma, J., & Price, M. R. (2021). The global impact of wild pigs (Sus scrofa) on terrestrial biodiversity. Scientific Reports, 11(1), 13256.
Rosa, M. G., Brescovit, A. D., Baretta, C. R. D. M., Santos, J. C. P., Oliveira Filho, L. C. I. D., & Baretta, D. (2019). Diversity of soil spiders in land use and management systems in Santa Catarina, Brazil. Biota Neotropica, 19(2), e20180619.
Ruiz, N., Jiménez, J. J., & Lavelle, P. (2008). Soil macrofauna, Field Manual. FAO, Rome.
Sanchez-Hernandez, J. C., Capowiez, Y., & Ro, K. S. (2020). Potential use of earthworms to enhance decaying of biodegradable plastics. ACS Sustainable Chemistry & Engineering, 8(11), 4292–4316.
Sawyer, C., Whitesides, C., & Stine, M. (2022). Bioturbation by grizzly bears in relict solifluction features of Glacier National Park, Montana, USA. Revista De Geomorfologie, 24(2), 40–49.
Scholz, H. C., Mühldorfer, K., Shilton, C., Benedict, S., Whatmore, A. M., Blom, J. & T. Eisenberg (2016). The change of a medically important genus: Worldwide occurrence of genetically diverse novel Brucella species in exotic frogs. PLoS One, 11(12), e0168872.
Sendra, A., Jiménez-Valverde, A., Selfa, J., & Reboleira, A. S. P. S. (2021). Diversity, ecology, distribution and biogeography of Diplura. Insect Conservation and Diversity, 14, 415–425.
Setälä, H. (2005). Does biological complexity relate to functional attributes of soil food webs? In P. de Ruiter, V. Wolters, J. C. Moore, & K. Melville-Smith (Eds.), Dynamic food webs: Multispecies assemblages, ecosystem development, and environmental change (pp. 308–320). Academic Press, Sydney.
Sierwald, P., & Spelda, J. (2021). MilliBase. [http://www.millibase.org]
Silberschatz, A., Galvin, P. B., & Gagne, G. (1999). Applied operating system concepts. John Wiley & Sons, Inc.
Silva, O. D. D., & Malaquias, J. V. (2021). Organização de dados de pesquisa no PostgreSQL e realização de análise estatística em ambiente R: abordagem prática. Embrapa Cerrados, Documentos, 370, 81p.
Sket, B., & Trontelj, P. (2008). Global diversity of leeches (Hirudinea) in freshwater. Hydrobiologia, 595, 129–137.
Smith, J. L., Mulder, C. P. H., & Ellis, J. C. (2011). Seabirds as ecosystem engineers: nutrient inputs and physical disturbance get access arrow. In C. P. H. Mulder, W. B. Anderson, D. R. Towns, & P. J. Bellingham (Eds.), Seabird islands: Ecology, invasion, and restoration (pp. 27–55). Oxford University Press, Oxford.
Sluys, R. (2019). The evolutionary terrestrialization of planarian flatworms (Platyhelminthes, Tricladida, Geoplanidae): a review and research programme. Zoosystematics and Evolution, 95(2), 543–556.
Strandburg-Peshkin, A., Clutton-Brock, T., & Manser, M. B. (2020). Burrow usage patterns and decision-making in meerkat groups. Behavioral Ecology, 31, 292–302.
Sun, S., Dou, H., Wei, W., Fang, Y., Long, Z., Wang, J., An, F., Xu, J., Xue, T., Qiu, H., Hua, Y., & Jiang, G. (2021). A review of the engineering role of burrowing animals: implication of Chinese pangolin as an ecosystem engineer. Journal of Zoological Research, 3(3), 1–20.
Svavarsson, J. (2011). Subphylum Crustacea Brünnich, 1772. Zootaxa, 3148, 165–191.
Swift, M. J., Heal, O. W., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems. Oxford University Press, Oxford.
Tracy, C. R., Reynolds, S. J., McArthur, L., Tracy, C. R., & Christian, K. A. (2007). Ecology of aestivation in a cocoon-forming frog, Cyclorana australis (Hylidae). Copeia, 2007(4), 901–912.
Tripathi, P., Rathaur, S., Antil, J., Kanaujia, A., & Shukla, S. (2024). Anurans and their contribution to agriculture: a review. Brazilian Journal of Development, 10(5), e69656.
Trueb, L., & Gans, C. (1983). Feeding specializations of the Mexican burrowing toad, Rhinophrynus dorsalis (Anura: Rhinophrynidae). Journal of Zoology, 199, 189–208.
Tudose, C., & Rîșnoveanu, G. (2023). Effects of land use on millipede communities (Subphyllum Myriapoda, Class Diplopoda): a review. Transylvanian Review of Systematical and Ecological Research, 25(3), 23–40.
Übernickel, K., Pizarro-Araya, J., Bhagavathula, S., Paulino, L., & Ehlers, T. A. (2021). Reviews and syntheses: Composition and characteristics of burrowing animals along a climate and ecological gradient, Chile. Biogeosciences, 18, 5573–5594.
Uetz, P., Freed, P., Aguilar, R., Reyes, F., Kudera, J., & Hošek, J. (Eds.). (2023). The Reptile Database. http://www.reptile-database.org
UNEP. (2021). Food Waste Index Report 2021. United Nations Environment Programme.
Vasconcelos, I. A. de, Souza, J. O. de, de Castro, J. S., Santana, C. J. C. de, Magalhães, A. C. M., Castro, M. de S., & Pires Júnior, O. R. (2021). Salamanders and caecilians, neglected from the chemical point of view. Toxin Reviews, 41(4), 1304–1332. https://doi.org/10.1080/15569543.2021.1894016
Viles, H. A., Goudie, A. S., & Goudie, A. M. (2021). Ants as geomorphological agents: A global assessment. Earth-Science Reviews, 213, 103469. https://doi.org/10.1016/j.earscirev.2020.103469
Voorhies, M. R. (1975). Vertebrate burrows. In R. W. Frey (Ed.), The study of trace fossils (pp. 325–350). Springer. https://doi.org/10.1007/978-3-642-65923-2_15
Wallwork, J. A. (1970). Ecology of soil animals. McGraw-Hill.
Wang, Z., Walker, G. W., Muir, D. C. G., & Nagatani-Yoshida, K. (2020). Toward a global understanding of chemical pollution: A first comprehensive analysis of national and regional chemical inventories. Environmental Science & Technology, 54(5), 2575–2584. https://doi.org/10.1021/acs.est.9b06379
Wilcox, J. T., & van Vuren, D. H. (2009). Wild pigs as predators in oak woodlands of California. Journal of Mammalogy, 90(1), 114–118. https://doi.org/10.1644/08-MAMM-A-001.1
Wills, B. D., & Landis, D. A. (2018). The role of ants in north temperate grasslands: A review. Oecologia, 186(2), 323–338. https://doi.org/10.1007/s00442-017-4019-4
Woodcock, B. A. (2005). Pitfall trapping in ecological studies. In S. R. Leather (Ed.), Insect sampling in forest ecosystems (pp. 37–57). Blackwell Science. https://doi.org/10.1002/9780470750513.ch3
World Spider Catalog. (2024). World Spider Catalog (Version 25.0). Natural History Museum, Bern. http://wsc.nmbe.ch
Xiang, H., Zhang, J., & Zhu, Q. (2015). Worldwide earthworm research: A scientometric analysis, 2000–2015. Scientometrics, 105, 1195–1207. https://doi.org/10.1007/s11192-015-1705-8
Xiao, R., Ali, A., Xu, Y., Abdelrahman, H., Li, R., Lin, Y., Bolan, N., Shaheen, S. M., Rinklebe, J., & Zhang, Z. (2022). Earthworms as candidates for remediation of potentially toxic elements contaminated soils and mitigating the environmental and human health risks: A review. Environment International, 158, 106924. https://doi.org/10.1016/j.envint.2021.106924
Young, M. R., & Hebert, P. D. N. (2022). Unearthing soil arthropod diversity through DNA metabarcoding. PeerJ, 10, e12845. https://doi.org/10.7717/peerj.12845
Zhang, Z. Q. (2013). Phylum Arthropoda. Zootaxa, 3703, 1–82. https://doi.org/10.11646/zootaxa.3703.1.1
Zhang, Z.-Q. (Ed.). (2011). Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 1–237. https://doi.org/10.11646/zootaxa.3148.1.1
Zhou, L., Chen, Q., Ke, H., Wang, Z., Peng, J., Wu, D., Liu, Y., Feng, J., & Ren, B. (2023). Descriptions of a new genus and a new species, Grylloprimevala jilina (Grylloblattidae) from China. Ecology and Evolution, 13, e9750. https://doi.org/10.1002/ece3.9750
Zhu, D., Ding, J., Yin, Y., Ke, X., O’Connor, P., & Zhu, Y.-G. (2020). Effects of earthworms on the microbiomes and antibiotic resistomes of detritus fauna and phyllospheres. Environmental Science & Technology, 54(10), 6000–6008. https://doi.org/10.1021/acs.est.9b06606
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 Cintia Carla Niva, George Brown, Ozanival Dario Dantas da Silva, Juaci Vitoria Malaquias, Maria Elizabeth Fernandes Correia, Maria Inês Lopes de Oliveira, Talita Ferreira, Luis Fernando de Sousa Antunes, Natalia Rodríguez Eugenio

This work is licensed under a Creative Commons Attribution 4.0 International License.
Soil Organisms is committed to fair open access publishing. All articles are available online without publication fees. Articles published from Vol. 96 No. 3 (2024) onwards are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Articles published from Vol. 80 No. 1 through Vol. 96 No. 2 are available under the previous terms, allowing non-commercial, private, and scientific use.