Global distribution of expertise on soil micro- and mesofauna biodiversity evaluated by data science tools
DOI:
https://doi.org/10.25674/424Keywords:
soil biodiversity, soil invertebrates, bibliographic database, GLOSOBAbstract
Soils harbor a complex and diverse set of organisms able to regulate numerous environmental processes and affect the provision of various ecosystem services. However, these organisms are threatened by soil degradation, so we must expand knowledge and governance on these organisms and their multiple functionalities. The Global Soil Biodiversity Observatory (GLOSOB) was launched by the Convention on Biological Diversity in 2022 to assess and monitor soil biodiversity worldwide and fill this knowledge gap. As a basis for the establishment of GLOSOB, bibliographic analyses were conducted to map expertise in soil biodiversity, as well as the approaches and methods most used around the world. The present study focused on soil micro and mesofauna biodiversity, obtained by searching the Web of Science publications from January 2011 to February 2022 and subsequently applying a data science tool. The geographic distribution of the studies was highly skewed, with some nations like China, USA, several European countries, Brazil, the Russian Federation and Australia frequently appearing among the top 20 most productive and highlighting a stronger focus on soil micro and mesofauna research. The main gaps were in the African continent, the Middle East, Central and Southeast Asia and most of Latin America and the Caribbean, with few studies, heterogeneous and/or discontinuous scientific production on different aspects of micro and mesofauna. Most (65%) microfauna publications were on protists and 33% with nematodes. Microarthropods (Collembola and Acari) were the most studied groups of the mesofauna. For both soil micro and mesofauna, bioindicator approaches were the most used. In terms of methods for studying microfauna, DNA-related techniques were the most cited, while for mesofauna, extraction devices were the most frequently used. To establish soil micro and mesofauna biodiversity monitoring programs, there is a need for significant advances, both conceptually and in the standardization of methods for capacity building worldwide.
Downloads
References
Aali, G., & Shokraneh, F. (2021). No limitations to language, date, publication type, and publication status in search step of systematic reviews. Journal of Clinical Epidemiology, 133. https://doi.org/10.1016/j.jclinepi.2021.02.002
A‘Bear, A. D., Jones, T. H., & Boddy, L. (2014). Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecology, 10, 34–43. https://doi.org/10.1016/j.funeco.2013.01.009
Anthony, M. A., Bender, S. F., & van der Heijden, M. G. A. (2023). Enumerating soil biodiversity. Proceedings of the National Academy of Sciences of the USA, 120, e2304663120. https://doi.org/10.1073/pnas.2304663120
Arribas, P., Andújar, C., Salces‐Castellano, A., Emerson, B. C., & Vogler, A. P. (2021). The limited spatial scale of dispersal in soil arthropods revealed with whole‐community haplotype‐level metabarcoding. Molecular Ecology, 30(1), 48–61. https://doi.org/10.1111/mec.15591
Bardgett, R. D., Usher, M. B., & Hopkins, D. W. (2005). Biological diversity and function in soils. Cambridge University Press.
Betancur‐Corredor, B., Lang, B., & Russell, D. J. (2022). Reducing tillage intensity benefits the soil micro‐ and mesofauna in a global meta‐analysis. European Journal of Soil Science, 73(6), e13321. https://doi.org/10.1111/ejss.13321
Betancur‐Corredor, B., Lang, B., & Russell, D. J. (2023). Organic nitrogen fertilization benefits selected soil fauna in global agroecosystems. Biology and Fertility of Soils, 59(1), 1–16. https://doi.org/10.1007/s00374-022-01677-2
Briones, M. J. I. (2018). The serendipitous value of soil fauna in ecosystem functioning: The unexplained explained. Frontiers in Environmental Science, 6, 149. https://doi.org/10.3389/fenvs.2018.00149
Brown, G. G., & Sautter, K. D. (2009). Biodiversity, conservation and sustainable management of soil animals: The XV International Colloquium on Soil Zoology and XII International Colloquium on Apterygota. Pesquisa Agropecuária Brasileira, 44, i–ix.
Brown, G. G., Ferreira, T., Correia, M. E. F., Niva, C., Jesus, E. C., Oliveira, M. I. L., Antunes, L. F. S., Parron, L. M., Coelho, M. R. R., Chaer, G. M., et al. (2025). Soil biodiversity knowledge and use worldwide: Results from a global survey. Soil Organisms, 97(SI), 7–31.
Brown, G. G., Parnell, J. J., Kobayashi, M., Ferreira, T., Parron, L. M., Correia, M. E. F., Jesus, E. C., Chaer, G. M., Coelho, M. R. R., Niva, C., et al. (2025a). Towards a Global Soil Biodiversity Observatory (GLOSOB): Science and policy backgrounds. Soil Organisms, 97(SI), 127–141.
Caron, D., & Countway, P. (2009). Hypotheses on the role of the protistan rare biosphere in a changing world. Aquatic Microbial Ecology, 57, 227–238. https://doi.org/10.3354/ame01352
Cameron, E. K., Martins, I. S., Lavelle, P., Mathieu, J., Tedersoo, L., Gottschall, F., Guerra, C. A., et al. (2018). Global gaps in soil biodiversity data. Nature Ecology & Evolution, 2(7), 1042–1043. https://doi.org/10.1038/s41559-018-0573-8
Chen, J., Zhao, J., Du, H., Xu, M., Lei, Y., Chen, W., & Chao, J. (2024). Earthworms’ role in the management and regulation of croplands: Comparative research on field and laboratory studies revealed by bibliometric analysis. Ecological Indicators, 163, 112077. https://doi.org/10.1016/j.ecolind.2024.112077
Chiappero, M. F., Rossetti, M. R., Moreno, M. L., & Pérez-Harguindeguy, N. (2024). A global meta-analysis reveals a consistent reduction of soil fauna abundance and richness as a consequence of land use conversion. Science of the Total Environment, 173822. https://doi.org/10.1016/j.scitotenv.2024.173822
Christel, A., Maron, P. A., & Ranjard, L. (2021). Impact of farming systems on soil ecological quality: A meta-analysis. Environmental Chemistry Letters, 19(6). https://doi.org/10.1007/s10311-021-01302-y
Conti, E., & Mulder, C. (2022). Chemistry-driven Enchytraeidae assemblages acting as soil and ecosystem engineers in edaphic communities. Ecological Indicators, 144, 109529. https://doi.org/10.1016/j.ecolind.2022.109529
Culik, M. P., & Filho, D. Z. (2003). Diversity and distribution of Collembola (Arthropoda: Hexapoda) of Brazil. Biodiversity and Conservation, 12(6), 1119–1143. https://doi.org/10.1023/A:1023069912619
Decaëns, T., Jiménez, J. J., Gioia, C., Measey, G. J., & Lavelle, P. (2006). The values of soil animals for conservation biology. European Journal of Soil Biology, 42, S23–S38. https://doi.org/10.1016/j.ejsobi.2006.07.00
Didden, W., & Römbke, J. (2001). Enchytraeids as indicator organisms for chemical stress in terrestrial ecosystems. Ecotoxicology and Environmental Safety, 50, 25–43.
Dutta, T. K., & Phani, V. (2023). The pervasive impact of global climate change on plant-nematode interaction continuum. Frontiers in Plant Science, 14, 1143889. https://doi.org/10.3389/fpls.2023.1143889
FAO. (2015). Status of the world’s soil resources: Main report. FAO & ITPS.
FAO. (2020). State of knowledge of soil biodiversity – Status, challenges and potentialities. Summary for policy makers. FAO, ITPS, GSBI, SCBD & EC. https://policycommons.net/artifacts/1526136/state-of-knowledge-of-soil-biodiversity-status-challenges-and-potentialities/2214245/
Fioratti Junod, M., Reid, B. J., Sims, I., & Miller, A. J. (2023). Below-ground pitfall traps for standardised monitoring of soil mesofauna: Design and comparison to Berlese/Tullgren funnels. Pedobiologia, 101, 150911. https://doi.org/10.1016/j.pedobi.2023.150911
Garg, D., Patel, N., Rawat, A., & Rosado, A. S. (2024). Cutting edge tools in the field of soil microbiology. Current Research in Microbial Sciences, 6, 100226. https://doi.org/10.1016/j.crmicr.2024.100226
Geisen, S., Mitchell, E. A. D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., Fernández, L. D., Jousset, A., Krashevska, V., Singer, D., Spiegel, F. W., Walochnik, J., & Lara, E. (2018). Soil protists: A fertile frontier in soil biology research. FEMS Microbiology Reviews, 42, 293–323. https://doi.org/10.1093/femsre/fuy006
Gergócs, V., & Hufnagel, L. (2009). Application of oribatid mites as indicators (review). Applied Ecology and Environmental Research, 7(1), 79–98. https://doi.org/10.15666/aeer/0701_079098
Guerra, C. A., Heintz-Buschart, A., Sikorski, J., Chatzinotas, A., Guerrero-Ramírez, N., Cesarz, S., Beaumelle, L., et al. (2020). Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 11(1), 3870. https://doi.org/10.1038/s41467-020-17688-2
Jeffery, S., Giardi, C., Jones, A., Montanarella, L., Marmo, L., Miko, L., Ritz, K., Römbke, J., & van der Putten, W. H. (2010). European atlas of soil biodiversity. Publications Office of the European Union. https://data.europa.eu/doi/10.2788/94222
Jernigan, A., Kao-Kniffin, J., Pethybridge, S., & Wickings, K. (2023). Soil microarthropod effects on plant growth and development. Plant and Soil, 483(1–2), 27–45. https://doi.org/10.1007/s11104-022-05766-x
Joimel, S., Chassain, J., Artru, M., & Faburé, J. (2022). Collembola are among the most pesticide‐sensitive soil fauna groups: A meta‐analysis. Environmental Toxicology and Chemistry, 41(10), 2333–2341. https://doi.org/10.1002/etc.5428
Keller, C., Heck, T., & Rittberger, M. (2022). How many sources are needed? The effects of bibliographic databases on systematic review outcomes. In The ACM/IEEE Joint Conference on Digital Libraries in 2022 (JCDL’22) (June 20–24, Cologne, Germany). https://doi.org/10.1145/1234567890
Kevan, D. K. M. c. E. (1985). Soil zoology, then and now—mostly then. Quaestiones Entomologicae, 21, 371–472.
Krogh, P. H., Kostov, K., & Damgaard, C. F. (2020). The effect of Bt crops on soil invertebrates: A systematic review and quantitative meta-analysis. Transgenic Research, 29(5), 487–498. https://doi.org/10.1007/s11248-020-00213-y
Lang, B., Betancur-Corredor, B., & Russell, D. J. (2023). Soil mineral nitrogen content is increased by soil mesofauna and nematodes–A meta-analysis. Soil Organisms, 95(2), 117–128. https://doi.org/10.25674/so95iss2id310
Lavelle, P. (2009). Ecology and the challenge of a multifunctional use of soil. Pesquisa Agropecuária Brasileira, 44(8), 803–810.
Lavelle, P., Mathieu, J., Spain, A., Brown, G., Fragoso, C., Lapied, E., De Aquino, A., et al. (2022). Soil macroinvertebrate communities: A worldwide assessment. Global Ecology and Biogeography, 31(7), 1261–1276. https://doi.org/10.1111/geb.13492
Liao, J.-R., Ho, C.-C., & Ko, C.-C. (2023). Milestones and future directions in the taxonomy of Phytoseiid mites (Acari: Mesostigmata) in Taiwan. Formosan Entomologist, 43, 15–23. https://doi.org/10.6662/TESFE.202302_43(1).002
Lindo, Z., et al. (2025). The threat-work: A network of potential threats to soil biodiversity. Soil Organisms, 97(SI), 31–46.
Lienhard, A., & Krisper, G. (2021). Hidden biodiversity in microarthropods (Acari, Oribatida, Eremaeoidea, Caleremaeus). Scientific Reports, 11, 23123. https://doi.org/10.1038/s41598-021-02602-7
Mathieu, J., Antunes, A. C., Barot, S., Bonato Asato, A. E., Bartz, M. L. C., Brown, G. G., Calderon-Sanou, I., Decaëns, T., Fonte, S. J., Ganault, P., et al. (2022). SOilFauna – A global synthesis effort on the drivers of soil macrofauna communities and functioning: Workshop report. Soil Organisms, 94(2), 111–126. https://doi.org/10.25674/so94iss2id282
Mathieu, J., Lavelle, P., Brown, G. G., Eisenhauer, N., & Cooper, M. (2024). Global Soil Macrofauna. http://www.globalsoilmacrofauna.com/
Nicol, J., Turner, S., Coyne, D., den Nijs, L., Sue, H., & Maafi, Z. (2011). Current nematode threats to world agriculture. In Genomics and molecular genetics of plant-nematode interactions (pp. 21–43). https://doi.org/10.1007/978-94-007-0434-3_2
Phillips, H. R. P., Bach, E. M., Bartz, M. L. C., et al. (2021). Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 8, 136. https://doi.org/10.1038/s41597-021-00912-z
Phillips, H. R. P., Cameron, E. K., Eisenhauer, N., Burton, V. J., Ferlian, O., Jin, Y., Kanabar, S., Malladi, S., Murphy, R. E., Peter, A., et al. (2024). Global changes and their environmental stressors have a significant impact on soil biodiversity—A meta-analysis. iScience, 27(9), 110540. https://doi.org/10.1016/j.isci.2024.110540
Potapov, A., Bellini, B., Chown, S., Deharveng, L., Janssens, F., Kováč, Ľ., Kuznetsova, N., Ponge, J.-F., Potapov, M., et al. (2020). Towards a global synthesis of Collembola knowledge – Challenges and potential solutions. Soil Organisms, 92(3), 161–188. https://doi.org/10.25674/so92iss3pp161
Potapov, A. M., Chen, T. W., Striuchkova, A. V., Alatalo, J. M., Alexandre, D., Arbea, J., ... & Scheu, S. (2024). Global fine-resolution data on springtail abundance and community structure. Scientific Data, 11(1), 22. https://doi.org/10.1038/s41597-023-02784-x
Pranckutė, R. (2021). Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications, 9(1), 12. https://doi.org/10.3390/publications9010012
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Römbke, J., Schmelz, R. M., & Pélosi, C. (2017). Effects of organic pesticides on enchytraeids (Oligochaeta) in agroecosystems: Laboratory and higher-tier tests. Frontiers in Environmental Science, 5, 20. https://doi.org/10.3389/fenvs.2017.00020
Saccaggi, D. L., & Ueckermann, E. A. (2024). The problem of taxonomic uncertainty in biosecurity: South African mite interceptions as an example. Acarologia, 64(2), 363–369. https://doi.org/10.24349/top1-r59v
Schmelz, R. M., Niva, C. C., Römbke, J., & Collado, R. (2013). Diversity of terrestrial Enchytraeidae (Oligochaeta) in Latin America: Current knowledge and future research potential. Applied Soil Ecology, 69, 13–20.
Silberschatz, A., Galvin, P. B., & Gagne, C. (1999). Applied operating system concepts. John Wiley & Sons, Inc.
Silva, O. D. D., & Malaquias, J. V. (2021). Organização de dados de pesquisa no PostgreSQL e realização de análise estatística em ambiente R: abordagem prática. Embrapa Cerrados, Documentos 370, 81p.
Swift, M. J., Heal, O. W., Anderson, J. M., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems (Vol. 5). Univ of California Press.
Szabó, B., Korányi, D., Gallé, R., Lövei, G. L., Bakonyi, G., & Batáry, P. (2023). Urbanization decreases species richness, and increases abundance in dry climates whereas decreases in wet climates: A global meta-analysis. Science of the Total Environment, 859, 160145. http://dx.doi.org/10.1016/j.scitotenv.2022.160145
Tibbett, M., Fraser, T. D., & Duddigan, S. (2020). Identifying potential threats to soil biodiversity. PeerJ, 8, e9271. https://doi.org/10.7717/peerj.9271
Van Den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., de Goede, R. G. M., Adams, B. J., Ahmad, W., Andriuzzi, W. S., et al. (2019). Soil nematode abundance and functional group composition at a global scale. Nature, 572(7768), 194–198. https://doi.org/10.1038/s41586-019-1418-6
Wall, D. H., Nielsen, U. N., & Six, J. (2015). Soil biodiversity and human health. Nature, 528(7580), 69–76. https://doi.org/10.1038/nature15744
Walter, D. E., & Proctor, H. C. (2013). Mites–ecology, evolution and behaviour: Life at a microscale (2nd ed.). Springer.
Wilder, E. I., & Walters, W. H. (2021). Using conventional bibliographic databases for social science research: Web of Science and Scopus are not the only options. Scholarly Assessment Reports, 3(1), 4, 1–17. https://doi.org/10.29024/sar.36
Xiong, W., Song, Y., Yang, K., Gu, Y., Wei, Z., Kowalchuk, G. A., Xu, Y., Jousset, A., Shen, Q., & Geisen, S. (2020). Rhizosphere protists are key determinants of plant health. Microbiome, 8, 27. https://doi.org/10.1186/s40168-020-00799-9
Zhang, Y., Peng, S., Chen, X., & Chen, H. Y. (2022). Plant diversity increases the abundance and diversity of soil fauna: A meta-analysis. Geoderma, 411, 115694. https://doi.org/10.1016/j.geoderma.2022.115694
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 Maria Elizabeth Fernandes Correia, George Brown, Cintia Niva, Luiz Fernando Antunes, Talita Ferreira, Maria Inês Oliveira, Dr Juaci V. Malaquias, Dr Ozanival Dario D. Silva, Dr Natalia Eugenio

This work is licensed under a Creative Commons Attribution 4.0 International License.
Soil Organisms is committed to fair open access publishing. All articles are available online without publication fees. Articles published from Vol. 96 No. 3 (2024) onwards are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Articles published from Vol. 80 No. 1 through Vol. 96 No. 2 are available under the previous terms, allowing non-commercial, private, and scientific use.