Urbanization has opposing effects on the trophic niche of three ubiquitous soil animal taxa

Authors

DOI:

https://doi.org/10.25674/455

Keywords:

soil microarthropods , urban ecology, urbanization, stable isotopes

Abstract

Soil microarthropods comprise diverse trophic groups and contribute to many soil functions, including carbon and nutrient cycling. However, there is comparatively little known about how these organisms and their trophic ecologies respond to urbanization. In this study, we tested whether urbanization constrains trophic niches in three representative microarthropod taxa (Collembola, Oribatida, and Mesostigmata) across an established urbanization gradient in Rochester, New York, USA. We used stable isotope analysis (δ¹³C, δ¹⁵N) as a tool to study this phenomenon, and we found that δ¹³C and δ¹³N shifted slightly within and between the microarthopod taxa in response to urbanization. However, we saw more stark contrast between these taxa groups when we compared isotopic niche space between the taxa, and found that Oribatida and Collembola experienced a diminishment in their isotope niche area. In contrast, Mesostigmata experienced an expansion in their niche area as a result of urbanization. Collectively, these findings underscore that microarthropod taxa respond uniquely to urbanization depending on their underlying biology and ecology, and the trophic niche of some organisms may even be enlarged by urbanization pressures. Thus, our study highlights the need to further understand the link between soil animal community composition, function, and the facilitation of soil ecosystem services in urban areas.

Downloads

Download data is not yet available.

Author Biography

  • Kyle Wickings, Cornell University

    Associate Profesor, Department of Entomology, Cornell Agritech

References

Anderson, J. M. (1975). The Enigma of soil animal species diversity. In J. Vanek (Ed.), Progress in Soil Zoology (pp. 51–58). Springer-Science+Business Media, B.V.

Anthony, M. A., Bender, S. F. & van der Heijden, M. G. A. (2023). Enumerating soil biodiversity. Proceedings of the National Academy of Sciences, 120(33). https://doi.org/10.1073/pnas

Aronson, M. F. J., La Sorte, F. A., Nilon, C. H., Katti, M., Goddard, M. A., Lepczyk, C. A., Warren, P. S., Williams, N. S. G., Cilliers, S., Clarkson, B., Dobbs, C., Dolan, R., Hedblom, M., Klotz, S., Kooijmans, J. L., Kühn, I., Macgregor-Fors, I., Mcdonnell, M., Mörtberg, U., Winter, M. (2014). A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences, 281(1780). https://doi.org/10.1098/rspb.2013.3330

Bardgett, R. D. & Van Der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515(7528), 505–511. https://doi.org/10.1038/nature13855

Behan-Pelletier, V. & Lindo, Z. (2023). Oribatid Mites: Biodiversity, Taxonomy and Ecology (First). CRC Press, Taylor and Francis Group.

Berg, M. P., Stoffer, M. & Van Den Heuvel, H. H. (2004). Feeding guilds in Collembola based on digestive enzymes. Pedobiologia, 48(5–6), 589–601. https://doi.org/10.1016/j.pedobi.2004.07.006

Bock, H. W., Wickings, K. G., Sparks, J. P. & Rossi, F. S. (2024). Soil animal communities demonstrate simplification without homogenization along an urban gradient. June, 1–15. https://doi.org/10.1002/eap.3039

Bray, N. & Wickings, K. (2019). The roles of invertebrates in the urban soil microbiome. Frontiers in Ecology and Evolution, 7(SEP). https://doi.org/10.3389/fevo.2019.00359

Briones, M. J. I. (2014). Soil fauna and soil functions: A jigsaw puzzle. Frontiers in Environmental Science, 2(APR), 1–22. https://doi.org/10.3389/fenvs.2014.00007

Brussaard, L. (1998). Soil fauna, guilds, functional groups and ecosystem processes. Applied Soil Ecology, 9(1–3), 123–135. https://doi.org/10.1016/S0929-1393(98)00066-3

Bureau, U. S. C. (2019). Total Population Survey.

Chahartaghi, M., Langel, R., Scheu, S. & Ruess, L. (2005). Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biology and Biochemistry, 37(9), 1718–1725. https://doi.org/10.1016/j.soilbio.2005.02.006

Coleman, D. C., Crossley, D. A. & Hendrix, P. F. (2004). Fundamentals of Soil Ecology (2nd Editio). Elsevier Academic Press.

Coleman, D. C. & Wall, D. H. (2017). Soil Fauna: Occurence, Biodiversity, and Roles in Ecosystem Function. In E. A. Paul (Ed.), Soil Microbiology, Ecology and Biochemistry (4th Editio, pp. 111–149). Elsevier Academic Press.

Crotty, F. V., Adl, S. M., Blackshaw, R. P. & Murray, P. J. (2012). Using stable isotopes to differentiate trophic feeding channels within soil food webs. Journal of Eukaryotic Microbiology, 59(6), 520–526. https://doi.org/10.1111/j.1550-7408.2011.00608.x

Crowther, T. (2012). Effects of grazing soil fauna on the functioning and community composition of saprotrophic basidiomycete fungi. 1–128. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.567264

de Carvalho, D. R., Sparks, J. P., Flecker, A. S., Alves, C. B. M., Moreira, M. Z. & Pompeu, P. S. (2021). Nitrogen pollution promotes changes in the niche space of fish communities. Oecologia, 197(2), 485–500. https://doi.org/10.1007/s00442-021-05029-z

Dindal, D. L. (1990). Soil Biology Guide. Wiley.

Eisenhauer, N., Hines, J., Maestre, F. T. & Rillig, M. C. (2023). Reconsidering functional redundancy in biodiversity research. iDiv, 4–7. https://doi.org/10.1038/s44185-023-00015-5

Elmqvist, T., Fragkias, M., Goodness, J., Guneralp, B., Marcotullio, P. J., McDonald, R. I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K. C. & Wilkinson, C. (2013). Urbanization, Biodiversity And Ecosystem Services: Challenges and Opportunities. Springer, New York.

Elmqvist, T. & Mcdonald, R. I. (2014). Urbanization, biodiversity and ecosystem services: challenges and opportunities: a global assessment. In Choice Reviews Online (Vol. 51, Issue 10). https://doi.org/10.5860/choice.51-5590

Faeth, S. H., Bang, C. & Saari, S. (2011). Urban biodiversity: Patterns and mechanisms. Annals of the New York Academy of Sciences, 1223(1), 69–81. https://doi.org/10.1111/j.1749-6632.2010.05925.x

Faeth, S. H., Warren, P. S., Shochat, E. & Marussich, W. A. (2005). Trophic dynamics in urban communities. BioScience, 55(5), 399–407. https://doi.org/10.1641/0006-3568(2005)055[0399:TDIUC]2.0.CO;2

Fry, B. (2008). Stable Isotope Ecology (3rd ed.). Springer Science+Business Media.

Grandy, A. S., Wieder, W. R., Wickings, K. & Kyker-Snowman, E. (2016). Beyond microbes: Are fauna the next frontier in soil biogeochemical models? Soil Biology and Biochemistry, 102, 40–44. https://doi.org/10.1016/j.soilbio.2016.08.008

Groffman, P. M., Cavender-Bares, J., Bettez, N. D., Grove, J. M., Hall, S. J., Heffernan, J. B., Hobbie, S. E., Larson, K. L., Morse, J. L., Neill, C., Nelson, K., O’Neil-Dunne, J., Ogden, L., Pataki, D. E., Polsky, C., Chowdhury, R. R. & Steele, M. K. (2014). Ecological homogenization of urban USA. Frontiers in Ecology and the Environment, 12(1), 74–81. https://doi.org/10.1890/120374

Groffman, P. M., Pouyat, R. V., McDonnell, M. J., Pickett, S. T. A. & Zipperer, W. C. (1995). Carbon pools and trace gas fluxed in urban forest soils. In R. Lat, J. Kimble, E. Levine & B. A. Steward (Eds.), Advances in soil science, soil management and greenhouse effect (pp. 147–158). CRC Press, Taylor and Francis Group.

Hedlund, K., Griffiths, B., Christensen, S., Scheu, S., Setälä, H., Tscharntke, T. & Verhoef, H. (2004). Trophic interactions in changing landscapes: Responses of soil food webs. Basic and Applied Ecology, 5(6), 495–503. https://doi.org/10.1016/j.baae.2004.09.002

Hosler, S. C., Garfinkel, M. B., Roberts, M., Whelan, C. & Minor, E. (2024). Management scale drives bee and forb biodiversity patterns in suburban green spaces. Biodiversity and Conservation, 67–84. https://doi.org/10.1007/s10531-024-02954-2

Huang, Y., Yesilonis, I. & Szlavecz, K. (2020). Soil microarthropod communities of urban green spaces in Baltimore, Maryland, USA. Urban Forestry and Urban Greening, 53(May), 126676. https://doi.org/10.1016/j.ufug.2020.126676

Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80(3), 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x

Kaye, J. P., Groffman, P. M., Grimm, N. B., Baker, L. A. & Pouyat, R. V. (2006). A distinct urban biogeochemistry? Trends in Ecology and Evolution, 21(4), 192–199. https://doi.org/10.1016/j.tree.2005.12.006

Klarner, B., Maraun, M. & Scheu, S. (2013). Trophic diversity and niche partitioning in a species rich predator guild - Natural variations in stable isotope ratios (13C/12C, 15N/14N) of mesostigmatid mites (Acari, Mesostigmata) from Central European beech forests. Soil Biology and Biochemistry, 57, 327–333. https://doi.org/10.1016/j.soilbio.2012.08.013

Kotze, J., Venn, S., Niemelä, J. & Spence, J. (2013). Effects of Urbanization on the Ecology and Evolution of Arthropods. Urban Ecology, 159–166. https://doi.org/10.1093/acprof:oso/9780199563562.003.0019

Krause, A., Sandmann, D., Potapov, A., Ermilov, S., Widyastuti, R., Haneda, N. F., Scheu, S. & Maraun, M. (2021). Variation in Community-Level Trophic Niches of Soil Microarthropods With Conversion of Tropical Rainforest Into Plantation Systems as Indicated by Stable Isotopes (15N, 13C). Frontiers in Ecology and Evolution, 9(May), 1–10. https://doi.org/10.3389/fevo.2021.592149

Krumsick, K. J. & Fisher, J. A. D. (2019). Spatial and ontogenetic variation in isotopic niche among recovering fish communities revealed by Bayesian modeling. PLoS ONE, 14(4), 1–21. https://doi.org/10.1371/journal.pone.0215747

Langel, R. & Dyckmans, J. (2014). Combined 13C and 15N isotope analysis on small samples using a near-conventional elemental analyzer/isotope ratio mass spectrometer setup. Rapid Communications in Mass Spectrometry, 28(9), 1019–1022. https://doi.org/10.1002/rcm.6878

Liang, C. (2020). Soil microbial carbon pump: Mechanism and appraisal. Soil Ecology Letters. https://doi.org/10.1007/s42832-020-0052-4

Lussenhop, J. (1992). Mechanisms of Microarthropod-Microbial Interactions in Soil. Advances in Ecological Research, 23(C), 1–33. https://doi.org/10.1016/S0065-2504(08)60145-2

Maraun, M., Erdmann, G., Fischer, B. M., Pollierer, M. M., Norton, R. A., Schneider, K. & Scheu, S. (2011). Stable isotopes revisited: Their use and limits for oribatid mite trophic ecology. Soil Biology and Biochemistry, 43(5), 877–882. https://doi.org/10.1016/j.soilbio.2011.01.003

Marshall, H. H., Inger, R., Jackson, A. L., McDonald, R. A., Thompson, F. J. & Cant, M. A. (2019). Stable isotopes are quantitative indicators of trophic niche. Ecology Letters, 22(11), 1990–1992. https://doi.org/10.1111/ele.13374

McDonnell, M. J. & Pickett, S. T. A. (1990). Ecosystem Structure and Function along Urban-Rural Gradients : An Unexploited Opportunity for Ecology. Ecology, 71(4), 1232–1237.

McDonnell, M., Pickett, S., Groffman, P., Bohlen, P., Pouyat, R., Zipperer, W., Parmelee, R., Carreiro, M. & Medley, K. (1997). Ecosystem processes along an urban-to-rural gradient. Urban Ecosystems, 1(1), 21–36. https://doi.org/10.1023/A:1014359024275

McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation, 127(3), 247–260. https://doi.org/10.1016/j.biocon.2005.09.005

Minor, M. A. & Cianciolo, J. M. (2007). Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Applied Soil Ecology, 35(1), 140–153. https://doi.org/10.1016/j.apsoil.2006.05.004

Moore, J. C. (1988). The influence of microarthropods on symbiotic and non-symbiotic mutualism in detrital-based below-ground food webs. Agriculture, Ecosystems and Environment, 24(1–3), 147–159. https://doi.org/10.1016/0167-8809(88)90062-X

Parnell, A. & Jackson, M. A. (2019). Package ‘ SIBER .’

Pollierer, M. M. & Scheu, S. (2021). Stable isotopes of amino acids indicate that soil decomposer microarthropods predominantly feed on saprotrophic fungi. Ecosphere, 12(3). https://doi.org/10.1002/ecs2.3425

Potapov, A. (2022). Multifunctionality of belowground food webs: resource, size and spatial energy channels. Biological Reviews, 4, 1–21. https://doi.org/10.1111/brv.12857

Potapov, A. M., Beaulieu, F., Birkhofer, K., Bluhm, S. L., Degtyarev, M. I., Devetter, M., Goncharov, A. A., Gongalsky, K. B., Klarner, B., Korobushkin, D. I., Liebke, D. F., Maraun, M., Mc Donnell, R. J., Pollierer, M. M., Schaefer, I., Shrubovych, J., Semenyuk, I. I., Sendra, A., Tuma, J., … Scheu, S. (2022). Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biological Reviews, 49. https://doi.org/https://doi.org/10.1111/brv.12832

Potapov, A. M., Semenyuk, I. I. & Tiunov, A. V. (2014). Seasonal and age-related changes in the stable isotope composition (15N/14N and 13C/12C) of millipedes and collembolans in a temperate forest soil. Pedobiologia, 57(4–6), 215–222. https://doi.org/10.1016/j.pedobi.2014.09.005

Potapov, A. M., Tiunov, A. V. & Scheu, S. (2019). Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biological Reviews, 94(1), 37–59. https://doi.org/10.1111/brv.12434

Potapov, A., Pollierer, M., Salmon, S., Šustr, V. & Chen, T.-W. (2020). Multidimensional trophic niche revealed by complementary approaches: gut content, digestive enzymes, fatty acids and stable isotopes in soil fauna. 1–40. https://doi.org/10.1101/2020.05.15.098228

Ruess, L. & Chamberlain, P. M. (2010). The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biology and Biochemistry, 42(11), 1898–1910. https://doi.org/10.1016/j.soilbio.2010.07.020

Setala, H., Berg, M. P. & Hefin Jones, T. (2005). trophic and functional redundancy in soil communities (pp. 239–249).

Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E. & Hope, D. (2006). From patterns to emerging processes in mechanistic urban ecology. Trends in Ecology and Evolution, 21(4), 186–191. https://doi.org/10.1016/j.tree.2005.11.019

Szlavecz, K., Csuzdi, C., Hornung, E. & Korsós, Z. (2020). Urban soil fauna. The Routledge Handbook of Urban Ecology, 425–438. https://doi.org/10.4324/9780429506758-36

Triplehorn, C. A., Johnson, N. F. & Borror, D. J. (2005). Borror and DeLong’s introduction to the study of insects (7th Editio). Thomas Brooks/Cole.

Walter, D. (2006). Major Kite Taxa. https://idtools.org/id/invasive_mite/Invasive_Mite_Identification/key/Major_Mite_taxa/Media/Html/0001About.htm

Wheeler, M. M., Neill, C., Groffman, P. M., Avolio, M., Bettez, N., Cavender-Bares, J., Roy Chowdhury, R., Darling, L., Grove, J. M., Hall, S. J., Heffernan, J. B., Hobbie, S. E., Larson, K. L., Morse, J. L., Nelson, K. C., Ogden, L. A., O’Neil-Dunne, J., Pataki, D. E., Polsky, C., … Trammell, T. L. E. (2017). Continental-scale homogenization of residential lawn plant communities. Landscape and Urban Planning, 165(November 2016), 54–63. https://doi.org/10.1016/j.landurbplan.2017.05.004

Whitehead, J., Hempel, S. & Rillig, M. C. (2022). Non-Mycorrhizal Fungal Presence Within Roots Increases Across an Urban Gradient in Berlin, Germany. Frontiers in Environmental Science, 10(April), 1–7. https://doi.org/10.3389/fenvs.2022.888310

Whitehead, J., Roy, J., Hempel, S. & Rillig, M. C. (2022). Soil microbial communities shift along an urban gradient in Berlin, Germany. Frontiers in Microbiology, 13(August), 1–14. https://doi.org/10.3389/fmicb.2022.972052

Yang, J. L., Yuan, D. G., Zhao, Y. G., He, Y. & Zhang, G. L. (2020). Stoichiometric relations of C, N, and P in urban top soils in Nanjing, China, and their biogeochemical implications. Journal of Soils and Sediments, C. https://doi.org/10.1007/s11368-020-02826-6

Downloads

Published

2025-06-18

Issue

Section

SHORT COMMUNICATION

How to Cite

Bock, H., Sparks, J., Scheu, S., Groffman, P., Rossi, F. ., & Wickings, K. (2025). Urbanization has opposing effects on the trophic niche of three ubiquitous soil animal taxa. Soil Organisms. https://doi.org/10.25674/455

Most read articles by the same author(s)