Soil quality, leaf litter quality, and microbial biomass interactively drive soil respiration in a microcosm experiment

Authors

DOI:

https://doi.org/10.25674/so93iss3id158

Keywords:

Aboveground-belowground interactions, carbon cycle, decomposition, leaf litter C dynamics, leaf litter traits, context-dependency

Abstract

Soil respiration plays a central role in global carbon dynamics, and small changes in the magnitude of soil respiration could have large impacts on atmospheric CO2 concentrations. Heterotrophic soil respiration mainly comes from microbial mineralization of soil organic matter and decomposition of plant litter, yet only a few studies have addressed the combined effects of interactions among leaf litter quality, soil quality, and microbial biomass on soil respiration. We conducted a microcosm experiment using three soils from three forest sites representing a gradient in soil quality, comprised of soil pH and C:N ratio, and six tree litter types (from the same forests), encompassing a gradient in leaf nutrient and lignin concentrations. We followed soil CO2 emissions, soil basal respiration (measured as O2-consumption), and microbial biomass over twelve weeks to examine variation in response to leaf litter and soil quality and their interactions. Our results show that soil CO2 emissions increased significantly with soil quality and leaf litter quality respectively, and these effects were mediated by interactions with soil microbial biomass. Moreover, we found idiosyncratic interactive effects of leaf litter quality and microbial biomass on soil CO2 emissions across the gradient in soil quality. The sensitivity of soil respiration to soil quality and the interactions between leaf litter quality and soil microbial biomass suggests that global change drivers altering forest composition and soil community composition may have significant cascading effects on the soil carbon cycle.

References

Adachi, M., A. Ishida, S. Bunyavejchewin, T. Okuda & H. Koizumi (2009): Spatial and temporal variation in soil respiration in a seasonally dry tropical forest. – Journal of Tropical Ecology 25: 531–539 [https://doi.org/10.1017/s026646740999006x].

Anderson, J. P. E. & K. H. Domsch (1978): A physiological method for the quantitative measurement of microbial biomass in soils. – Soil Biology and Biochemistry 10: 215–221 [https://doi.org/10.1016/0038-0717(78)90099-8].

Anderson, T.-H. & K. H. Domsch (1993): The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. – Soil Biology and Biochemistry 25: 393–395.

Augusto, L., J. Ranger, D. Binkley & A. Rothe (2002): Impact of several common tree species of European temperate forests on soil fertility. – Annals of Forest Science 59: 233–253 [https://doi.org/10.1051/forest:2002020].

Barantal, S., H. Schimann & S. Hättenschwiler (2012): Nutrient and Carbon Limitation on Decomposition in an Amazonian Moist Forest. – Ecosystems 15: 1039–1052.

Bardgett, R. D. & W. H. Van Der Putten (2014): Belowground biodiversity and ecosystem functioning. – Nature 515: 505–511.

Bauer, J., M. Herbst, J. A. Huisman, L. Weihermüller & H. Vereecken (2008): Sensitivity of simulated soil heterotrophic respiration to temperature and moisture reduction functions. – Geoderma 145: 17–27.

Beck, T., R. G. Joergensen, E. Kandeler, F. Makeschin, E. Nuss, H. R. Oberholzer & S. Scheu (1997): An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. – Soil Biology and Biochemistry 29: 1023–1032

Blouin, M., M. E. Hodson, E. A. Delgado, G. Baker, L. Brussaard, K. R. Butt, J. Dai, L. Dendooven, G. Peres, J. E. Tondoh, D. Cluzeau & J. J.Brun (2013): A review of earthworm impact on soil function and ecosystem services. – European Journal of Soil Science 64:161–182 [https://doi.org/10.1111/ejss.12025].

Bonal, D., A. Bosc, S. Ponton, J. Y. Goret, B. T. Burban, P. Gross, J. M. Bonnefond, J. Elbers, B. Longdoz, D. Epron, J. M. Guehl & A. Granier (2008): Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. – Global Change Biology 14: 1917–1933 [https://doi.org/10.1111/j.1365-2486.2008.01610.x].

Bowden, R. D., E. Davidson, K. Savage, C. Arabia & P. Steudler (2004): Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. – Forest Ecology and Management 196: 43–56.

Bradford, M. A., R. J. Warren II, P. Baldrian, T. W. Crowther, D. S. Maynard, E. E. Oldfield, W. R. Wieder, S. A. Wood & J. R. King (2014): Climate fails to predict wood decomposition at regional scales. – Nature Climate Chang 4: 625–630 [https://doi.org/10.1038/nclimate2251].

Chen, D., Z. Lan, X. Bai, J. B. Grace & Y. Bai (2013): Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe. – Journal of Ecology 101: 1322–1334 [https://doi.org/10.1111/1365-2745.12119].

Cleveland, C. C., S. C. Reed, A. B. Keller, D. R. Nemergut, S. P. O’Neill, R. Ostertag & P. M. Vitousek (2014): Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. – Oecologia 174: 283–294 [https://doi.org/10.1007/s00442-013-2758-9].

Cornwell, W. K., J. H. C. Cornelissen, K. Amatangelo, E. Dorrepaal, V. T. Eviner, O. Godoy, S. E. Hobbie, B. Hoorens, H. Kurokawa, N. Pérez-Harguindeguy & et al. (2008): Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. – Ecology Letters 11: 1065–1071 [https://doi.org/10.1111/j.1461-0248.2008.01219.x].

Cotrufo, M. F., M. D. Wallenstein, C. M. Boot, K. Denef & E. Paul (2013): The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? – Global Chang Biology 19: 988–995 [ https://doi.org/10.1111/gcb.12113].

de Vries, F. T., P. Manning, J. R. B. Tallowin, S. R. Mortimer, E. S. Pilgrim, K. A. Harrison, P. J. Hobbs, H. Quirk, B. Shipley, J. H. C. Cornelissen, J. Kattge & R. D. Bardgett (2012): Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. – Ecology Letters 15:1230–1239 [https://doi.org/10.1111/j.1461-0248.2012.01844.x].

Demoling, F., L. Ola Nilsson & E. Bååth (2008): Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. – Soil Biology and Biochemistry 40: 370–379 [https://doi.org/10.1016/j.soilbio.2007.08.019].

Denton, L. E., T. N. Rosenstiel & R. K. Monson (2003): Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. – Soil Biology and Biochemistry 35: 525–534.

Djukic, I., S. Kepfer-Rojas, I. K. Schmidt, K. S. Larsen, C. Beier, B. Berg, K. Verheyen, A. Caliman, A. Paquette, A. Gutiérrez-Girón & et al. (2018): Early stage litter decomposition across biomes. – Science of The Total Environment (628–629) 1369–1394.

Djukic, I., S. Kepfer-Rojas, I. K. Schmidt, K. S. Larsen, C. Beier, B. Berg, K. Verheyen, S. M. Trevathan-Tackett, P. I. Macreadie, M. Bierbaumer & et al. (2021): The TeaComposition Initiative: unleashing the power of international collaboration to understand litter decomposition. – Soil Organisms (93): 73–78.

Fang, X., L. Zhao, G. Zhou, W. Huang & J. Liu (2015): Increased litter input increases litter decomposition and soil respiration but has minor effects on soil organic carbon in subtropical forests. – Plant and Soil 392:139–153 [https://doi.org/10.1007/s11104-015-2450-4].

Fanin, N. & I. Bertrand (2016): Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient. – Soil Biology and Biochemistry 94: 48–60 [https://doi.org/10.1016/j.soilbio.2015.11.007].

Fanin, N., S. Hättenschwiler, S. Barantal, H. Schimann & N. Fromin (2011): Does variability in litter quality determine soil microbial respiration in an Amazonian rainforest? – Soil Biology and Biochemistry 43:1014–1022 [https://doi.org/10.1016/j.soilbio.2011.01.018].

Farrell, M., M. Prendergast-Miller, D. L. Jones, P. Hill & L. M. Condron (2014): Soil microbial organic nitrogen uptake is regulated by carbon availability. – Soil Biology and Biochemistry 77: 261–267 [https://doi.org/10.1016/j.soilbio.2014.07.003].

Freschet, G. T., R. Aerts & J. H. C. Cornelissen (2012): A plant economics spectrum of litter decomposability. – Functional Ecology 26: 56–65 [https://doi.org/10.1111/j.1365-2435.2011.01913.x].

Hanson, P. J., N. T. Edwards, C. T. Garten & J. A. Andrews (2000): Separating root and soil microbial contributions to soil respiration : A review of methods and observations. – Biogeochemistry 48:115–146 [https://doi.org/10.1023/A:1006244819642].

Heim, A. & B. Frey (2004): Early stage litter decomposition rates for Swiss forests. – Biogeochemistry 70: 299–313.

Hobbie, S. E., J. Oleksyn, D. M. Eissenstat & P. B. Reich (2010): Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. – Oecologia 162: 505–513 [https://doi.org/10.1007/s00442-009-1479-6].

Högberg, M. N, P. Högberg & D. D. Myrold (2007): Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? – Oecologia 150: 590–601.

Hooper, D., D. Bignell, V. Brown, L. Brussard, J. Dangerfield, D. Wall, D. Wardle, D. Coleman, K. Giller, P. Lavelle & et al. (2000): Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. – Bioscience 50:1049–1061.

Huang, Y.-H., Y.-L. Li, Y. Xiao, K. O. Wenigmann, G.-Y. Zhou, D.-Q. Zhang, M. Wenigmann, X.-L. Tang & J.-X. Liu (2011): Controls of litter quality on the carbon sink in soils through partitioning the products of decomposing litter in a forest succession series in South China. – Forest Ecology and Management (261): 1170–1177.

Huang J, W. Liu, S. Yang, L. Yang, Z. Peng, M. Deng, S. Xu, B. Zhang, J. Ahirwal & L. Liu (2021): Plant carbon inputs through shoot, root, and mycorrhizal pathways affect soil organic carbon turnover differently. – Soil Biology and Biochemistry 160: 108322.

Huhta, V., D. H. Wright & D. C. Coleman (1989): Characteristics of defaunated soil. I. A comparison of three techniques applied to two different forest soils. – Pedobiologia 33: 417–426 [10.1111/j.1467-842X.1996.tb01036.x].

Jacob, M., C. Leuschner & F. M. Thomas (2010a): Productivity of temperate broad-leaved forest stands differing in tree species diversity. – Annals of Forest Science 67: 503–503 [https://doi.org/10.1051/forest/2010005].

Jacob, M., K. Viedenz, A. Polle & F. M. Thomas (2010b): Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). – Oecologia 164: 1083–1094 [https://doi.org/10.1007/s00442-010-1699-9].

Jacob, M., N. Weland, C. Platner, M. Schaefer, C. Leuschner & F. M. Thomas (2009): Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity. – Soil Biology and Biochemistry 41: 2122–2130 [https://doi.org/10.1016/j.soilbio.2009.07.024].

Joly, F. X., A. Milcu, M. Scherer-Lorenzen, L. K. Jean, F. Bussotti, S. M. Dawud, S. Müller, M. Pollastrini, K. Raulund-Rasmussen, L. Vesterdal & S. Hättenschwiler (2017): Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. –New Phytologist 214: 1281–1293 [https://doi.org/10.1111/nph.14452].

Katayama, A., T. Kume, H. Komatsu, M. Ohashi, M. Nakagawa, M. Yamashita, K. Otsuki, M. Suzuki & T. Kumagai (2009): Effect of forest structure on the spatial variation in soil respiration in a Bornean tropical rainforest. – Agricultural & Forest Meteorology 149: 1666–1673 [https://doi.org/10.1016/j.agrformet.2009.05.007].

Knorr, M., S. D. Frey & P. S. Curtis (2005): Nitrogen Additions and Litter Decomposition: A Meta-Analysis. – Ecology 86: 3252–3257.

Kuzyakov, Y. (2010): Priming effects: Interactions between living and dead organic matter. – Soil Biology and Biochemistry 42: 1363–1371 [https://doi.org/10.1016/j.soilbio.2010.04.003].

Kuzyakov, Y. (2006): Sources of CO2 efflux from soil and review of partitioning methods. – Soil Biology and Biochemistry 38: 425–448 [https://doi.org/10.1016/j.soilbio.2005.08.020].

Kuzyakov, Y., I. Subbotina, H. Chen, I. Bogomolova & X. Xu (2009): Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. – Soil Biology and Biochemistry 41: 210–219 [https://doi.org/10.1016/j.soilbio.2008.10.016].

Kwon, T., H. Shibata, S. Kepfer-Rojas, I. K. Schmidt, K. S. Larsen, C. Beier, B. Berg, K. Verheyen, J.-F. Lamarque, F. Hagedorn & et al. (2021): Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes. – Frontiers in Forests and Global Change (4): 678480.

Laganière, J., D. Paré, Y. Bergeron, & H. Y. H. Chen (2012): The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. – Soil Biology and Biochemistry 53:18–27 [https://doi.org/10.1016/j.soilbio.2012.04.024].

Lange, M., N. Eisenhauer, C. a. Sierra, H. Bessler, C. Engels, R. I. Griffiths, P. G. Mellado-Vázquez, A. a. Malik, J. Roy, S. Scheu, S. Steinbeiss, B. C. Thomson, S. E. Trumbore & G. Gleixner (2015): Plant diversity increases soil microbial activity and soil carbon storage. – Nature. Communication 6: 6707 [https://doi.org/10.1038/ncomms7707].

Legay, N., C. Baxendale, K. Grigulis, U. Krainer, E. Kastl, M. Schloter, R. D. Bardgett, C. Arnoldi, M. Bahn, M. Dumont, T. Pommier, J. C. Clément1 & S. Lavorel (2014): Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities. – ANN BOT-LONDON 114: 1011–1021 [https://doi.org/10.1093/aob/mcu169].

Leimer, S., Y. Oelmann, N. Eisenhauer, A. Milcu, C. Roscher, S. Scheu, A. Weigelt, C. Wirth & W. Wilcke (2016): Mechanisms behind plant diversity effects on inorganic and organic N leaching from temperate grassland. – Biogeochemistry 1–15 [10.1007/s10533-016-0283-8].

Lekkerkerk, L., H. Lundkvist & G. Agren (1990): Decomposition of heterogeneous substrates; an experimental investigation of a hypothesis on substrate and microbial properties. – Soil Biology and Biochemistry 22: 161–167 [10.1016/0038-0717(90)90081-A].

Leuschner, C., H. Jungkunst & S. Fleck (2009): Functional role of forest diversity: pros and cons of synthetic stands and across-site comparisons in established forests. – Basic and Applied Ecology 10: 1–9.

Liu, L., J. S. King, F. L. Booker, C. P. Giardina, H. Lee Allen, & S. Hu (2009): Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO 2 : a microcosm study. – Global Chang Biology 15: 441–453 [https://doi.org/10.1111/j.1365-2486.2008.01747.x].

Luo, Y. & X. Zhou (2006): Soil respiration and the Enviroment. – Elsevier, London: 33–74.

Makkonen, M., M. P. Berg, I. T. Handa, S. Ttenschwiler, J. van Ruijven, P. M. van Bodegom & R. Aerts (2012): Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. – Ecology Letters 15: 1033–1041 [https://doi.org/10.1111/j.1461-0248.2012.01826.x].

Manzoni, S., J. P. Schimel & S. Barbara (2012a): Responses of soil microbial communities to water stress : Results from a Responses of soil microbial communities to water stress : results from a meta-analysis. – Ecology 93: 930–938 [https://doi.org/10.2307/23213741].

Manzoni, S., P. Taylor, A. Richter, A. Porporato & G. I. Ågren (2012b): Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils. – New Phytologist 196: 79–91 [https://doi.org/10.1111/j.1469-8137.2012.04225.x].

Marhan, S., R. Langel, E. Kandeler & S. Scheu (2007): Use of stable isotopes (13C) for studying the mobilisation of old soil organic carbon by endogeic earthworms (Lumbricidae). – European Journal of Soil Biology 43: S201–S208 [https://doi.org/10.1016/j.ejsobi.2007.08.017].

Martin, J. G. & P. V. Bolstad (2009): Variation of soil respiration at three spatial scales: Components within measurements, intra-site variation and patterns on the landscape. – Soil Biology and Biochemistry 41: 530–543 [https://doi.org/10.1016/j.soilbio.2008.12.012].

Mölder, A., M. Bernhardt-Römermann & W. Schmidt (2006): Forest ecosystem research in Hainich National Park (Thuringia): first results on flora and vegetation in stands with contrasting tree species diversity. – Waldoekologie online 3: 83–99.

Moyano, F. E., S. Manzoni & C. Chenu (2013): Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. – Soil Biology and Biochemistry 59: 72–85 [https://doi.org/10.1016/j.soilbio.2013.01.002].

Mueller, K. E., D. M. Eissenstat, S. E. Hobbie, J. Oleksyn, A. M. Jagodzinski, P. B. Reich, O. A. Chadwick & J. Chorover (2012): Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. – Biogeochemistry 111: 601–614 [https://doi.org/10.1007/s10533-011-9695-7].

Mueller, K. E., S. E. Hobbie, J. Chorover, P. B. Reich, N. Eisenhauer, M. J. Castellano, O. A. Chadwick, T. Dobies, C. M. Hale, A. M. Jagodziński & et al. (2015): Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. – Biogeochemistry 123: 313–327 [https://doi.org/10.1007/s10533-015-0083-6].

Nannipieri, P., E. Kandeler, P. Ruggiero, R. G. Burns & R. P. Dick (2002): Enzyme activities and microbiological and biochemical processes in soil. – Biology and Fertility of Soils 38: 216–227 [https://doi.org/10.1007/s00374-003-0626-1].

Ono, K., K. Miki, M. Amari & K. Hirai (2008): Near‐infrared reflectance spectroscopy for the determination of lignin‐derived compounds in the decomposed and humified litters of coniferous and deciduous temperate forests in Northern Kanto District, Central Japan. – Soil Science & Plant Nutrition 54: 188–196.

Paterson, E. (2003): Importance of rhizodeposition in the coupling of plantrandmicrobial productivity. – European Journal of Soil Science 54: 741–750 [https://doi.org/10.1046/j.1365-2389.2003.00557.x].

Phillips, H. R. P., C. A. Guerra, M. L. C. Bartz, M. J. I. Briones, G. Brown, T. W. Crowther, O. Ferlian, K. B. Gongalsky, J. van den Hoogen, J. Krebs & et al.(2019): Global distribution of earthworm diversity. – Science (366): 480–485 [https://doi.org/10.1126/science.aax4851].

Prescott, C. E., B. R. Taylor, W. F. J. Parsons, D. M. Durall & D. Parkinson (1993): Nutrient release from decomposing litter in Rocky Mountain coniferous. – Canadian Journal of Forest Research 23: 1576–1586.

Qiao, Y., S. Miao, L. C. R. Silva & W. R. Horwath (2014): Understory species regulate litter decomposition and accumulation of C and N in forest soils: A long-term dual-isotope experiment. – Forest Ecology and Management (329): 318–327.

Reich, P. B. (2005): Global biogeography of plant chemistry: filling in the blanks. – New Phytologist 168: 263–266 [https://doi.org/10.1111/j.1469-8137.2005.01562.x].

Rousk, J., P. C. Brookes & E. Bååth (2011): Fungal and bacterial growth responses to N fertilization and pH in the 150-year “Park Grass” UK grassland experiment. – FEMS Microbiology Ecology 76: 89–99 [https://doi.org/10.1111/j.1574-6941.2010.01032.x].

Rubino, M., J. A. J. Dungait, R. P. Evershed, T. Bertolini, P. De Angelis, A. D’Onofrio, A. Lagomarsino, C. Lubritto, A. Merola, F. Terrasi & M. F. Cotrufo (2010): Carbon input belowground is the major C flux contributing to leaf litter mass loss: Evidences from a 13C labelled-leaf litter experiment. – Soil Biology and Biochemistry 42:1009–1016 [https://doi.org/10.1016/j.soilbio.2010.02.018].

Rubino, M., C. Lubritto, C., A. D’Onofrio, F. Terrasi, G. Gleixner & M. F. Cotrufo (2007): An isotopic method for testing the influence of leaf litter quality on carbon fluxes during decomposition. – Oecologia 154: 155–166 [https://doi.org/10.1007/s00442-007-0815-y].

Russell, A.E., J. W. Raich, O. J. Valverde-Barrantes & R. F. Fisher (2007): Tree Species effects on soil properties in experimental plantations in tropical moist forest. – Soil Science Society of America Journal 71: 1389–1397 [https://doi.org/10.2136/sssaj2006.0069].

Santos, F. M. & F. D. C. Balieiro (2018): Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptus and Acacia mangium. – Plant and Soil 423: 141–155.

Scheu, S. (1992): Automated measurement of the respiratory response of soil microcompartments: Active microbial biomass in earthworm faeces. – Soil Biology and Biochemistry 24: 1113–1118.

Schlesinger, W. H. & J. A. Andrews (2000): Soil respiration and the global carbon cycle. – Biogeochemistry 48: 7–20 [https://doi.org/10.1023/A:1006247623877].

Schmidt, M. W. I., M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. a. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, D. a. C. Manning, P. Nannipieri, D. P. Rasse, S. Weiner & S. E. Trumbore (2011): Persistence of soil organic matter as an ecosystem property. – Nature 478: 49–56 [https://doi.org/10.1038/nature10386].

Schuur, E. A. G., A. D. Mcguire, C. Schädel, G. Grosse, J.W. Harden, D. J. Hayes, G. Hugelius, C. D. Koven, P. Kuhry & D. M. Lawrence (2015): Climate change and the permafrost carbon feedback. – Nature 520: 171.

Scott-Denton, L. E., K. L. Sparks & R. K. Monson (2003): Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. – Soil Biology and Biochemistry 35:

–534 [https://doi.org/10.1016/S0038-0717(03)00007-5].

Sinsabaugh, R. L., S. Manzoni, D. L. Moorhead & A. Richter (2013): Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. – Ecology Letters 16: 930–939.

Six, J., S. D. Frey, R. K. Thiet & K. M. Batten (2006): Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. – Soil Science Society of America Journal 70: 555 [https://doi.org/10.2136/sssaj2004.0347].

Sjöberg, G., B. Bergkvist, D. Berggren & S. I. Nilsson (2003): Long-term N addition effects on the C mineralization and DOC production in mor humus under spruce. – Soil Biology and Biochemistry 35: 1305–1315.

Stewart, C.E., P. Moturi, R. F. Follett & A. D. Halvorson (2015): Lignin biochemistry and soil N determine crop residue decomposition and soil priming. – Biogeochemistry 124: 335–351 [https://doi.org/10.1007/s10533-015-0101-8].

Subke, J. A., I. Inglima & M. F. Cotrufo (2006): Trends and methodological impacts in soil CO2 efflux partitioning: A metaanalytical review. – Global Chang Biology 12: 921–943 [https://doi.org/10.1111/j.1365-2486.2006.01117.x].

Thakur, M. P., A. Milcu, P. Manning, P. A. Niklaus, C. Roscher, S. Power, P. B. Reich, S. Scheu, D. Tilman, F. Ai, H. Guo, R. Ji, S. Pierce, N. G. Ramirez, A. N. Richter, K. Steinauer, T. Strecker, A. Vogel & N. Eisenhauer (2015): Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. – Global Change Biology 21: 4076–4085 [https://doi.org/10.1111/gcb.13011].

Thoms, C., A. Gattinger, M. Jacob, F. M. Thomas & G. Gleixner (2010): Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. – Soil Biology and Biochemistry 42: 1558–1565 [https://doi.org/10.1016/j.soilbio.2010.05.030].

Tian, D., L. Jiang, S. Ma, W. Fang, B. Schmid, L. Xu, J. Zhu, P. Li, G. Losapio, X. Jing, C. Zheng, H. Shen, X. Xu, B. Zhu & J. Fang (2017): Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China. – Science of Total Environment 607-608: 1367–1375 [https://doi.org/10.1016/j.scitotenv.2017.06.057].

Tian, D., E. Du, L. Jiang, S. Ma, W. Zeng, A. Zou, C. Feng, L. Xu, A. Xing, W. Wang, C. Zheng, C. Ji, H. Shen & J. Fang (2018): Responses of forest ecosystems to increasing N deposition in China: A critical review. – Environment Pollution 243: 75–86 [https://doi.org/10.1016/j.envpol.2018.08.010].

Vesterdal, L., I. K. Schmidt, I. Callesen, L. O. Nilsson & P. Gundersen, P. (2008): Carbon and nitrogen in forest floor and mineral soil under six common European tree species. – Forest Ecology and Management 255: 35–48 [https://doi.org/10.1016/j.foreco.2007.08.015].

Wardle, D. A. (2004): Ecological Linkages Between Aboveground and Belowground Biota. – Science 304:1629–1633 [https://doi.org/10.1126/science.1094875].

Xu, S., L. L. Liu & E. J. Sayer (2013): Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments. – Biogeosciences 10: 7423–7433 [https://doi.org/10.5194/bg-10-7423-2013].

Xu S, P. Li P, E. J. Sayer, B. Zhang, J. Wang, C. Qiao & L. Liu (2018): Initial soil organic matter content influences the storage and turnover of litter-, root- and soil carbon. – Ecosystems 21: 1377–1389.

Xu, S., N. Eisenhauer, O. Ferlian, J. Zhang, G. Zhou, X. Lu, C. Liu & D. Zhang (2020): Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments. – Proceedings of the Royal Society B: Biological Sciences (287): 20202063.

Yan, Z., B. Bond-Lamberty, K. E. Todd-Brown, V. L. Bailey, S. Li, C. Q. Liu & C. X. Liu (2018). A moisture function of soil heterotrophic respiration that incorporates microscale processes. – Nature Communication 9: 1–10 [https://doi.org/10.1038/s41467-018-04971-6].

Zhang, D.Q., D. F. Hui, Y. Q. Luo & G. Y. Zhou (2008): Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. – Journal of Plant Ecology 1: 85–93 [https://doi.org/Doi 10.1093/Jpe/Rtn002].

Zhang, H., W. Li, H. D. Adams, A. Wang, J. Wu, C. Jin, D. Guan & F. Yuan (2018): Responses of Woody Plant Functional Traits to Nitrogen Addition: A Meta-Analysis of Leaf Economics, Gas Exchange, and Hydraulic Traits. – Frontiers in Plant Science 9: 34 [https://doi.org/10.3389/fpls.2018.00683].

Zhang, T., H. Y. H. Chen & H. Ruan (2018): Global negative effects of nitrogen deposition on soil microbes. – The ISME Journal 12: 7 [https://doi.org/10.1038/s41396-018-0096-y].

Zhou, G., S. Liu, Z. Li, D. Zhang, X. Tang, C. Zhou, J. Yan & J. Mo (2006): Old-Growth Forests Can Accumulate Carbon in Soils. – Science (314): 1417–1417.

Zhou, L., X. Zhou, B. Zhang, M. Lu, Y. Luo, L. Liu & B. Li (2014): Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis. Global Chang Biology 20: 2332–2343.

Zhou, G., S. Xu, P. Ciais, S. Manzoni, J. Fang, G. Yu, X. Tang, P. Zhou, W. Wang, J. Yan & et al. (2019): Climate and litter C/N ratio constrain soil organic carbon accumulation. – National Science Review 6: 746–757.

Downloads

Published

2021-12-01

How to Cite

Liu, M., Cesarz, S., Eisenhauer, N., Xia, H., Fu, S., & Craven, D. (2021). Soil quality, leaf litter quality, and microbial biomass interactively drive soil respiration in a microcosm experiment. SOIL ORGANISMS, 93(3), 181–194. https://doi.org/10.25674/so93iss3id158

Issue

Section

ARTICLES