Aporrectodea earthworms respond to salt and organic matter levels in captive and free-choice mesocosms
DOI:
https://doi.org/10.25674/453Keywords:
Endogeic, Electrical Conductivity, Lumbricidae, Northern Great Plains, SalinityAbstract
As popular soil health indicators, earthworms play a role in soil assessments, especially when it comes to salinity. Salinity influences soil chemistry, structure, hydrology, and biological activity. To better understand the response of Aporrectodea earthworms to salinity, we conducted experiments in captive mesocosms that ranged in salinity (EC1:1 = 1 – 4.5 dS/m) and organic matter content (3.4% - 10%), and split-bin mesocosms that offered earthworms contrasting combinations of salt and organic matter levels. We observed that in captive situations, adult Aporrectodea earthworms survived in soils at all salinity and organic matter levels for 60 days. When mobility was allowed, adult Aporrectodea earthworms occurred in higher abundance in non-saline soils compared to saline soils, and elevated organic matter only alleviated the aversion to salinity when the alternative soil had less organic matter content. Based on these experiments, we conclude that earthworms prefer to reside in high organic matter, non-saline soils and prefer to avoid saline soils unless they are augmented with organic matter. The utility of earthworms as soil health indicators in a salinity context depends on their ability to select and move into more favorable environments, rather than their tolerance to salt ions.
Downloads
References
Angst, Š., Mueller, C. W., Cajthaml, T., Angst, G., Lhotáková, Z., Bartuška, M., Špaldoňová, A. & Frouz, J. (2017). Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. Geoderma, 289(1), 29–35. https://doi.org/10.1016/j.geoderma.2016.11.017
Bart, S., Barraud, A., Amossé, J., Péry, A. R. R., Mougin, C. & Pelosi, C. (2019a). Effects of two common fungicides on the reproduction of Aporrectodea caliginosa in natural soil. Ecotoxicology and Environmental Safety, 181, 518–524. https://doi.org/10.1016/j.ecoenv.2019.06.049
Bart, S., Pelosi, C. & Péry, A. R. R. (2019b). Towards a better understanding of the life cycle of the earthworm Aporrectodea caliginosa: New data and energy-based modelling. Pedobiologia, 77, 150592. https://doi.org/10.1016/j.pedobi.2019.150592
Bilski, J. J., Nelson, D. C. & Conlon, R. L. (1988). The response of four potato cultivars to chloride salinity, sulfate salinity, and calcium in pot experiments. American Potato Journal, 65(2), 85–90. https://doi.org/10.1007/BF02867456
Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussaard, L., Butt, K. R., Dai, J., Dendooven, L., Peres, G., Tondoh, J. E., et al. (2013). A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science, 64(2), 161–182. https://doi.org/10.1111/ejss.12025
Bottinelli, N., Henry-des-Tureaux, T., Hallaire, V., Mathieu, J., Benard, Y., Tran, T. D. & Jouquet, P. (2010). Earthworms accelerate soil porosity turnover under watering conditions. Geoderma, 156(1–2), 43–47. https://doi.org/10.1016/j.geoderma.2010.01.006
Boyrahmadi, M. & Raiesi, F. (2018). Plant roots and species moderate the salinity effect on microbial respiration, biomass, and enzyme activities in a sandy clay soil. Biology and Fertility of Soils, 54, 509–521. https://doi.org/10.1007/s00374-018-1277-6
Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A. & Harmon, J. (2018). Corn and soybean yield response to salinity influenced by soil texture. Agronomy Journal, 110(4), 1243–1253. https://doi.org/10.2134/agronj2017.10.0619
Carpenter, D., Hodson, M. E., Eggleton, P. & Kirk, C. (2008). The role of earthworm communities in soil mineral weathering: A field experiment. Mineralogical Magazine, 72(1), 33–36. https://doi.org/10.1180/minmag.2008.072.1.33
Combs, S. M. & Nathan, M. V. (2011). Soil organic matter. In M. Nathan & R. Gelderman (Eds.), Recommended chemical soil test procedures for the North Central Region (pp. 12.1–12.6). North Central Region Research Publication No. 221. https://www.canr.msu.edu/uploads/234/68557/rec_chem_soil_test_proce55c.pdf
Curry, J. P. & Schmidt, O. (2007). The feeding ecology of earthworms–a review. Pedobiologia, 50(6), 463–477. https://doi.org/10.1016/j.pedobi.2006.09.001
Daliakopoulos, I. N., Tsanis, I. K., Koutroulis, A., Kourgialas, N. N., Varouchakis, A. E., Karatzas, G. P. & Ritsema, C. J. (2016). The threat of soil salinity: A European scale review. Science of the Total Environment, 573, 727–739. https://doi.org/10.1016/j.scitotenv.2016.08.177
Edwards, C. A. (Ed). (2004). Earthworm Ecology (2nd ed.). CRC Press. https://doi.org/10.1201/9781420039719
Edwards, C. A. & Bohlen, P. J. (1996). Biology and Ecology of Earthworms (3rd ed.). Chapman & Hall.
Fischer, E. & Molnár, L. (1997). Growth and reproduction of Eisenia fetida (Oligochaera, Lumbricidae) in semi-natural soil containing various metal chlorides. Soil Biology and Biochemistry, 29(3/4), 667–670. https://doi.org/10.1016/S0038-0717(96)00193-9
Gasch, C., Utter, R. & Wick, A. (2021). Distribution of earthworm growth stages along a naturally occurring soil salinity gradient. Soil Organisms, 93(3), 195–205. https://doi.org/10.25674/so93iss3id170
Hadrich, J. C. (2012). Managing the economics of soil salinity in the Red River Valley of North Dakota. Journal of the ASFMRA, 80–88. 10.22004/ag.econ.190726
Hanson, B., Grattan, S. R. & Fulton, A. (1999). Agricultural salinity and drainage. University of California, Davis. https://hos.ifas.ufl.edu/media/hosifasufledu/documents/pdf/in-service-training/ist30688/IST30688---24.pdf
Harrell, F. Jr. (2024). Hmisc: Harrell miscellaneous (R package version 5.2–0). https://CRAN.R-project.org/package=Hmisc
Hendrix, P. F. (Ed). (1995). Earthworm Ecology and Biogeography in North America. Lewis Publishers.
Hirano, T. & Tamae, K. (2011). Earthworms and soil pollutants. Sensors, 11(12), 11157–11167. https://doi.org/10.3390/s111211157
Holmstrup, M. (2000). Field assessment of toxic effects on reproduction in the earthworms Aporrectodea longa and Aporrectodea rosea. Environmental Toxicology and Chemistry, 19(7), 1781–1787. https://doi.org/10.1002/etc.5620190711
Karimi, F., Rahimi, G. & Kolahchi, Z. (2020). Interaction effects of salinity, sewage sludge, and earthworms on the fractionations of Zn and Cu, and the metals uptake by the earthworms in a Zn-and Cu-contaminated calcareous soil. Environmental Science and Pollution Research, 27, 10565–10580. https://doi.org/10.1007/s11356-020-07719-2
Keller, L. P., McCarthy, G. J. & Richardson, J. L. (1986). Mineralogy and stability of soil evaporites in North Dakota. Soil Science Society of America Journal, 50(4), 1069–1071. https://doi.org/10.2136/sssaj1986.03615995005000040047x
Khalil, M. A., Abdel-Lateif, H. M., Bayoumi, B. M., van Straalen, N. M. & van Gestel, C. A. M. (1996). Effects of metals and metal mixtures on survival and cocoon production of the earthworm Aporrectodea caliginosa. Pedobiologia, 40, 548–556.
Li, Z., Meng, Q., Li, L., Bai, Z., Li, Y., Liu, H., Li, P. & Wang, T. (2025). Integrated deep vertical rotary tillage and subsurface pipe drainage techniques for sustainable soil salinization management and cotton production in arid regions. Agricultural Water Management, 312, 109429. https://doi.org/10.1016/j.agwat.2025.109429
Owojori, O. J. & Reinecke, A. J. (2014). Differences in ionic properties of salts affect saline toxicity to the earthworm Eisenia fetida. Applied Soil Ecology, 83, 247–252. https://doi.org/10.1016/j.apsoil.2013.05.019
Owojori, O. J., Reinecke, A. J. & Rozanov, A. B. (2009). The combined stress effects of salinity and copper on the earthworm Eisenia fetida. Applied Soil Ecology, 41(3), 277–285. https://doi.org/10.1016/j.apsoil.2008.11.006
Pérez-Losada, M., Ricoy, M., Marshall, J. C. & Domínguez, J. (2009). Phylogenetic assessment of the earthworm Aporrectodea caliginosa species complex (Oligochaeta: Lumbricidae) based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 52(2), 293–302. https://doi.org/10.1016/j.ympev.2009.04.003
Posit Team. (2024). RStudio: Integrated Development Environment for R. Posit Software, PBC. https://www.posit.co/
R Core Team. (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
Raiesi, F., Motaghian, H. R. & Nazarizadeh, M. (2020). The sublethal lead (Pb) toxicity to the earthworm Eisenia fetida (Annelida, Oligochaeta) as affected by NaCl salinity and manure addition in a calcareous clay loam soil during an indoor mesocosm experiment. Ecotoxicology and Environmental Safety, 190, 110083. https://doi.org/10.1016/j.ecoenv.2019.110083
Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston & M. E. Sumner (Eds.), Methods of Soil Analysis: Part 3 Chemical Methods (pp. 417–435). Soil Science Society of America, Inc., American Society of Agronomy, Inc. https://doi.org/10.2136/sssabookser5.3.c14
Schwert, D. P., Utter, R. A. & Deibert, E. J. (1991). Tillage system influence on earthworms (Lumbicidae) in North Dakota. Farm Research, 48, 5.
Sharif, F., Danish, M. U., Ali, A. S., Khan, A. U., Shahzad, L., Ali, H. & Ghafoor, A. (2016). Salinity tolerance of earthworms and effects of salinity and vermi amendments on growth of Sorghum bicolor. Archives of Agronomy and Soil Science, 62(8), 1169–1181. https://doi.org/10.1080/03650340.2015.1132838
Shutenko, G. S., Andriuzzi, W. S., Dyckmans, J., Luo, Y., Wilkinson, T. L. & Schmidt, O. (2022). Rapid transfer of C and N excreted by decomposer soil animals to plants and above-ground herbivores. Soil Biology and Biochemistry, 166, 108582. https://doi.org/10.1016/j.soilbio.2022.108582
Soil Survey Staff. (2024). Glyndon Series. Official Soil Series Descriptions, Natural Resources Conservation Service, United States Department of Agriculture. https://soilseries.sc.egov.usda.gov/osd_docs/g/glyndon.html
Thapa, R., Wick, A. & Chatterjee, A. (2017). Response of spring wheat to sulfate-based salinity stress under greenhouse and field conditions. Agronomy Journal, 109(2), 442–454. https://doi.org/10.2134/agronj2016.07.0384
Thomas, G. W. (1996). Soil pH and soil acidity. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston & M. E. Sumner (Eds.), Methods of Soil Analysis: Part 3 Chemical Methods (pp. 475–490). Soil Science Society of America, Inc., American Society of Agronomy, Inc. https://doi.org/10.2136/sssabookser5.3.c16
Van Vliet, P. C. J., Van der Stelt, B., Rietberg, P. I. & De Goede, R. G. M. (2007). Effects of organic matter content on earthworms and nitrogen mineralization in grassland soils. European Journal of Soil Biology, 43, S222-S229. https://doi.org/10.1016/j.ejsobi.2007.08.052
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. https://ggplot2.tidyverse.org
Wu, Z., Yin, B., Song, X., Qiu, J., Cao, L. & Zhao, Q. (2019). Effects of salinity on earthworms and the product during vermicomposting of kitchen wastes. International Journal of Environmental Research and Public Health, 16(23), 4737. https://doi.org/10.3390/ijerph16234737
Zörb, C., Geilfus, C. M., Dietz, K. J. & Ludwig-Müller, J. (2019). Salinity and crop yield. Plant Biology, 21(S1), 31–38. https://doi.org/10.1111/plb.12884
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Cecelia Castleberry, Jason Harmon, Brian J. Darby, Samiran Banerjee, Caley K. Gasch

This work is licensed under a Creative Commons Attribution 4.0 International License.
Soil Organisms is committed to fair open access publishing. All articles are available online without publication fees. Articles published from Vol. 96 No. 3 (2024) onwards are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Articles published from Vol. 80 No. 1 through Vol. 96 No. 2 are available under the previous terms, allowing non-commercial, private, and scientific use.