Sustainable measures for the protection and restoration of soil biodiversity in Germany
DOI:
https://doi.org/10.25674/447Keywords:
German Biodiversity Assessment, Collembola, Oribatida, Carabidae, Araneae, Faktencheck ArtenvielfaltAbstract
Soils are habitat for the majority of terrestrial life and soil biodiversity plays a crucial role in providing important ecosystem services. However, soil biodiversity is under threat and measures need to be taken to protect and restore it, but conservation so far usually focuses on the protection of attractive or endangered aboveground species. Furthermore, the small size of soil organisms and the considerable taxonomic expertise required for their identification result in a poor consideration of soil biodiversity when evaluating conservation measures. In this review, we compile the available knowledge on the effectiveness of conservation and restoration measures for soil biodiversity in Germany. We provide information on the following habitats: forests, inland wetlands (peatlands and floodplains), coastal sites, and urban areas; and on aboveground as well as belowground soil micro-, meso-, and macrofauna, as well as (to a lesser extent) soil microorganisms. Repeated measures, like management of forest sites are mainly applied in economically utilized areas, with soil biodiversity benefitting from reduced land-use intensity and the creation of a more natural environment. In strongly degraded landscapes (e.g., dried wetlands), an initial impulse measure is usually needed to restore natural conditions, with subsequent conservation management afterwards. In general, habitat heterogeneity is an important factor for increasing soil biodiversity not only above- but also belowground. Its positive effects apply at landscape scale by providing diverse environmental conditions and stepstone habitats, as well as at the small scale with many microhabitats at a few square meters. The main goal of protection and restoration measures must not be to maximize the number of species in a given area, but to establish a habitat-specific species community.
Downloads
References
Ampoorter E, Goris R, Cornelis WM, Verheyen K (2007) Impact of mechanized logging on compaction status of sandy forest soils. Forest Ecology and Management 241: 162–174. https://doi.org/10.1016/j.foreco.2007.01.019
Andresen, H., Bakker, J. P., Brongers, M., Heydemann, B., & Irmler, U. (1990). Long-term changes of salt marsh communities by cattle grazing. Vegetatio, 89(2), 137–148. https://doi.org/10.1007/BF00032166
Anthony, M. A., Bender, S. F., & van der Heijden, M. G. A. (2023). Enumerating soil biodiversity. Proceedings of the National Academy of Sciences, 120(33). https://doi.org/10.1073/pnas
Ausden, M., Sutherland, W. J., & James, R. (2001). The effects of flooding lowland wet grassland on soil macroinvertebrate prey of breeding wading birds. Journal of Applied Ecology, 38(2), 320–338. https://doi.org/10.1046/j.1365-2664.2001.00600.x
Baber, K., Wesenberg, J., & Xylander, W. E. R. (2019). Perzeption und Evaluierung von Virtual Reality (VR)-Formaten im Naturkundemuseum. Natur im Museum, 9.
Balkenhol, B., Haase, H., Gebauer, P., & Lehmitz, R. (2018). Steeplebushes conquer the countryside: influence of invasive plant species on spider communities (Araneae) in former wet meadows. Biodiversity and Conservation, 27(9), 2257–2274. https://doi.org/10.1007/s10531-018-1536-8
BBSR, Bundesamt für Bau-, Stadt- und Raumforschung (2023). Flächennutzung. Bundesinstitut für Bau-, Stadt- und Raumforschung. Retrieved from https://www.bbsr.bund.de/BBSR/DE/themen/energie-umwelt-klima/flaechennutzung/_node.html
Bernhardt, K.-G., & Koch, M. (2003). Restoration of a salt marsh system: temporal change of plant species diversity and composition. Basic and Applied Ecology, 4(5), 441–451. https://doi.org/10.1078/1439-1791-00180
Beylich, A., Oberholzer, H. R., Schrader, S., Höper, H., & Wilke, B. M. (2010). Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil and Tillage Research, 109(2), 133–143. https://doi.org/10.1016/j.still.2010.05.010
BMEL, Bundesministerium für Ernährung und Landwirtschaft (2024). Der Wald in Deutschland - Ergebnisse der vierten Bundeswaldinventur. Retrieved from https://www.bmel.de/DE/themen/wald/wald-in-deutschland/bundeswaldinventur.html
BMU, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit., & BfN, Bundesamt für Naturschutz (2021). Auenzustandsbericht 2021, Flussauen in Deutschland. Retrieved from https://doi.org/10.19217/brs211
Bobuľská, L., Demková, L., Čerevková, A., & Renčo, M. (2020). Impact of Peatland Restoration on Soil Microbial Activity and Nematode Communities. Wetlands, 40(4), 865–875. https://doi.org/10.1007/s13157-019-01214-2
Bonn, A., Hagen, K., & Reiche, D. W. (2002). The significance of flood regimes for Carabid beetle and spider communities in riparian habitats - a comparison of three major rivers in Germany. River Research and Applications, 64, 43–64. https://doi.org/10.1002/rra.632
Bonte, D., Maelfait, J. P., & Hoffmann, M. (2000). The impact of grazing on spider communities in a mesophytic calcareous dune grassland. Journal of Coastal Conservation, 6(2), 135–144. https://doi.org/10.1007/BF02913810
Brunet, J., Fritz, Ö., & Richnau, G. (2010). Biodiversity in European beech forests – a review with recommendations for sustainable forest management. Ecological Bulletins, 53, 77–94.
Brunet, J., & Isacsson, G. (2009). Influence of snag characteristics on saproxylic beetle assemblages in a south Swedish beech forest. Journal of Insect Conservation, 13(5), 515–528. https://doi.org/10.1007/s10841-008-9200-3
Buchholz, S. (2016). Natural peat bog remnants promote distinct spider assemblages and habitat specific traits. Ecological Indicators, 60, 774–780. https://doi.org/10.1016/j.ecolind.2015.08.025
Buchholz, S., Hannig, K., Möller, M., & Schirmel, J. (2018). Reducing management intensity and isolation as promising tools to enhance ground-dwelling arthropod diversity in urban grasslands. Urban Ecosystems, 21(6), 1139–1149. https://doi.org/10.1007/s11252-018-0786-2
BUND, A. e. V. (2023). Warum wir mehr Auenwald brauchen - Erkenntnisse und Empfehlungen des MediAN-Projektes im UNESCO-Biosphärenreservat Flusslandschaft Elbe. Retrieved from https://www.bund.net/service/publikationen/detail/publication/warum-wir-mehr-auenwald-brauchen/
Buttschardt, T. K. (2001). Extensive Dachbegrünungen und Naturschutz. Karlsruher Schriften zur Geographie und Geoökologie. Dissertation.
Cesarz, S., Ruess, L., Jacob, M., Jacob, A., Schaefer, M., & Scheu, S. (2013). Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil Biology & Biochemistry, 62, 36–45. https://doi.org/10.1016/j.soilbio.2013.02.020
Chollet, S., Brabant, C., Tessier, S., & Jung, V. (2018). From urban lawns to urban meadows: Reduction of mowing frequency increases plant taxonomic, functional and phylogenetic diversity. Landscape and Urban Planning, 180, 121–124. https://doi.org/10.1016/j.landurbplan.2018.08.009
Dijck, T., Janssen, M., Mechelen, C., & Jacobs, J. (2023). Comparing arthropod communities on two types of extensive green roofs. Preprint.
Dijk, J. Van, Didden, W. A. M., Kuenen, F., Bodegom, P. M. Van, Verhoef, H. A., & Aerts, R. (2009). Can differences in soil community composition after peat meadow restoration lead to different decomposition and mineralization rates? Soil Biology & Biochemistry, 41(8), 1717–1725. https://doi.org/10.1016/j.soilbio.2009.05.016
Doms-Grimm, L. X. (2024). Conservation Measures and their Impact on Soil Biodiversity in Germany - A Literature Review. Universität Leipzig. Bachelor thesis.
European Commission (2020). COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS - A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system.
European Commission (2023). Richtlinie über Bodenüberwachung und -resilienz. Retrieved from https://ec.europa.eu/commission/presscorner/detail/de/qanda_23_3637
Egerer, M., & Philpott, S. M. (2022). “Tidy” and “messy” management alters natural enemy communities and pest control in urban agroecosystems. PLoS ONE, 17, 1–19. https://doi.org/10.1371/journal.pone.0274122
Eisenhauer, N. (2024). Warum das Bodenleben für den Naturschutz so wichtig ist: Zusammenhänge ober- und unterirdischer Biodiversität - Einblicke aus 20 Jahren Forschung im Jena-Experiment. Natur Und Landschaft, 99(9/10), 436-445.
Eisenhauer, N., Guerra, C. A. , Tebbe, C., Xylander, W.E.R, Ristok, C., Babin, D., Bartkowski, B., Burkhard, B., Filser, J., Glante, F., Hohberg, K., Kleemann, J., Kolb, S., Lachmann, C., Lehmitz, R., Rillig, M., Römbke, J., Rueß, L., Scheu, S., Scheunemann, N., Steinhoff-Knopp, B., & Wellbrock, N. (2024). Bodenbiodiversität. – In Wirth, C.; Bruelheide, H.; Farwig, N.; Marx, J.; Settele; J. (2024): Faktencheck Artenvielfalt - Assessment zum Erhalt der biologischen Vielfalt in Deutschland. München, oekom.
Eisenhauer, N., Milcu, A., Sabais, A. C. W., Bessler, H., Brenner, J., Engels, C., … & Scheu, S. (2011). Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE, 6(1), 15–18. https://doi.org/10.1371/journal.pone.0016055
Emsens, W. J., van Diggelen, R., Aggenbach, C. J. S., Cajthaml, T., Frouz, J., Klimkowska, A., … & Verbruggen, E. (2020). Recovery of fen peatland microbiomes and predicted functional profiles after rewetting. ISME Journal, 14(7), 1701–1712. https://doi.org/10.1038/s41396-020-0639-x
Erdmann, G., Scheu, S., & Maraun, M. (2012). Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida). Experimental & Applied Acarology, 57(2), 157–169. https://doi.org/10.1007/s10493-012-9546-9
Erfanzadeh, R., Garbutt, A., Petillon, J., Maelfait, J., & Hoffmann, M. (2010). Factors affecting the success of early salt-marsh colonizers: seed availability rather than site suitability and dispersal traits. Plant Ecology, 206, 335–347. https://doi.org/10.1007/s11258-009-9646-8
FAO, ITPS, GSBI, CBD, & EC. (2020). State of knowledge of soil biodiversity - Status, challenges and potentialities. Rome, Italy.
Ferber, K. (2021). Kommunale Instrumente gegen Schottergärten. Natur Und Recht, 43(6), 370–378. https://doi.org/10.1007/s10357-021-3850-2
Filser, J., Doms-Grimm, L. X. & Ristok, C. (2025). Reviving Soil Biodiversity in Agricultural Land. Soil Organisms, 97(2), 159–172. https://doi.org/10.25674/445
Fischer, M., Bossdorf, O., Gockel, S., Hänsel, F., Hemp, A., Hessenmöller, D., … & Weisser, W. W. (2010). Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic and Applied Ecology, 11(6), 473–485. https://doi.org/10.1016/j.baae.2010.07.009
Fründ, H. (1996). Dachbegrünung als Lebensraum für Tiere? Stadt Und Grün, 1996(2), 92–96.
Gałka, M., Tobolski, K., Górska, A., & Lamentowicz, M. (2017). Resilience of plant and testate amoeba communities after climatic and anthropogenic disturbances in a Baltic bog in Northern Poland: Implications for ecological restoration. The Holocene, 27(1), 130–141. https://doi.org/10.1177/0959683616652704
Ganault, P., Nahmani, J., Hättenschwiler, S., Michelle, L., David, J., Henneron, L., … & Gillespie, L. M. (2021). Relative importance of tree species richness, tree functional type, and microenvironment for soil macrofauna communities in European forests. Oecologia, 196(2), 455–468. https://doi.org/10.1007/s00442-021-04931-w
Gaudig, G., & Krebs, M. (2016). Nachhaltige Moornutzung trägt zum Artenschutz bei: Torfmooskulturen als Ersatzlebensraum. Biologie in Unserer Zeit, 46(4), 251–257. https://doi.org/10.1002/biuz.201610600
Gilliam, F. (2007). The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience, 57(10), 845–858. https://doi.org/10.1641/B571007
Goldmann, K., Boeddinghaus, R. S., Klemmer, S., Regan, K. M., Heintz-Buschart, A., Fischer, M., … & Wubet, T. (2020). Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environmental Microbiology, 22(3), 873–888. https://doi.org/10.1111/1462-2920.14653
Goldmann, K., Schröter, K., Pena, R., Schöning, I., Schrumpf, M., Buscot, F., … & Wubet, T. (2016). Divergent habitat filtering of root and soil fungal communities in temperate beech forests. Scientific Reports, 6, 1–10. https://doi.org/10.1038/srep31439
Gruppe, A., Kilg, M., & Schopf, R. (2017). Restoration of a Danube floodplain forest: what happens to species richness of terrestrial beetles ? Restoration, 464, 1–11. https://doi.org/10.1111/rec.12627
Günther, J., & Assmann, T. (2005). Restoration ecology meets carabidology: effects of floodplain restitution on ground beetles (Coleoptera, Carabidae). Biodiversity and Conservation, 14, 1583–1606. https://doi.org/10.1007/s10531-004-0531-4
Haase, H., & Balkenhol, B. (2015). Spiders (Araneae) as subtle indicators for successional stages in peat bogs. Wetlands Ecology and Management, 23(3), 453–466. https://doi.org/10.1007/s11273-014-9394-y
Heilmann-Clausen, J., & Christensen, M. (2003). Fungal diversity on decaying beech logs - Implications for sustainable forestry. Biodiversity and Conservation, 12(5), 953–973. https://doi.org/10.1023/A:1022825809503
Heilmann-Clausen, J., & Christensen, M. (2004). Does size matter? On the importance of various dead wood fractions for fungal diversity in Danish beech forests. Forest Ecology and Management, 201(1), 105–117. https://doi.org/10.1016/j.foreco.2004.07.010
Hoffmann, H., Kleeberg, A., Görn, S., & Fischer, K. (2018). Riverine fen restoration provides secondary habitat for endangered and stenotopic rove beetles (Coleoptera: Staphylinidae). Insect Conservation and Diversity, 11(2), 194–203. https://doi.org/10.1111/icad.12247
Hofmann, B., Dreyling, L., Dal Grande, F., Otte, J., & Schmitt, I. (2023). Habitat and tree species identity shape aboveground and belowground fungal communities in central European forests. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1067906
Hohberg, K., Ristok, C., Eisenhauer, N., Tebbe, C. C. & Scheu, S. (2025). Status and trends in soil biodiversity. Soil Organisms, 97(2), 103-114. https://doi.org/10.25674/449
Hölscher, D., Hertel, D., Leuschner, C., & Hottkowitz, M. (2002). Tree species diversity and soil patchiness in a temperate broadleaved forest with limited rooting space. Flora - Morphology, Distribution, Functional Ecology of Plants, 197(2), 118–125. https://doi.org/10.1078/0367-2530-00021
Huth, V., Bartel, A., Günther, A., Heinze, S., Hofer, B., Jantz, N., … & Jurasinski, G. (2019). Feldversuch „OptiMoor“ – Erprobung und Entwicklung der Optimierung von Hochmoorsanierung auf landwirtschaftlich genutzten Standorten. TELMA - Berichte der Deutschen Gesellschaft für Moor- und Torfkunde, 49, 71–88. https://doi.org/10.23689/fidgeo-3667
Jabin, M., Mohr, D., Kappes, H., & Topp, W. (2004). Influence of deadwood on density of soil macro-arthropods in a managed oak-beech forest. Forest Ecology and Management, 194(1–3), 61–69. https://doi.org/10.1016/j.foreco.2004.01.053
Jabin, M., Topp, W., Kulfan, J., & Zach, P. (2007). The distribution pattern of centipedes in four primeval forests of central Slovakia. Biodiversity and Conservation, 16(12), 3437–3445. https://doi.org/10.1007/s10531-006-9012-2
Jacobs, A., Flessa, H., Don, A., Heidkamp, A., Prietz, R., Dechow, R. (2018). Landwirtschaftlich genutzte Böden in Deutschland: Ergebnisse der Bodenzustandserhebung. Thünen-Report. Johann Heinrich von Thünen-Institut, Braunschweig. https://doi.org/10.3220/REP1542818391000
John, J., Kernaghan, G., & Lundholm, J. (2017). The potential for mycorrhizae to improve green roof function. Urban Ecosystems, 20(1), 113–127. https://doi.org/10.1007/s11252-016-0573-x
Joimel, S., Grard, B., Auclerc, A., Hedde, M., Le Doaré, N., Salmon, S., & Chenu, C. (2018). Are Collembola “flying” onto green roofs? Ecological Engineering, 111, 117–124. https://doi.org/10.1016/j.ecoleng.2017.12.002
Joimel, S., Jules, A., & Vieublé Gonod, L. (2022). Collembola dispersion, selection, and biological interactions in urban ecosystems: a review. Environmental Chemistry Letters, 20(3), 2123–2133. https://doi.org/10.1007/s10311-022-01406-z
Joimel, S., Schwartz, C., Maurel, N., Magnus, B., Machon, N., Bel, J., & Cortet, J. (2019). Contrasting homogenization patterns of plant and collembolan communities in urban vegetable gardens. Urban Ecosystems, 22(3), 553–566. https://doi.org/10.1007/s11252-019-00843-z
Kappes, H. (2005). Influence Of Coarse Woody Debris On The Gastropod Community Of A Managed Calcareous Beech Forest In Western Europe. Journal of Molluscan Studies, 71(2), 85–91. https://doi.org/10.1093/mollus/eyi011
Kappes, H. (2006). Relations between forest management and slug assemblages (Gastropoda) of deciduous regrowth forests. Forest Ecology and Management, 237(1–3), 450–457. https://doi.org/10.1016/j.foreco.2006.09.067
Kappes, H., Jabin, M., Kulfan, J., Zach, P., & Topp, W. (2009). Spatial patterns of litter-dwelling taxa in relation to the amounts of coarse woody debris in European temperate deciduous forests. Forest Ecology and Management, 257(4), 1255–1260. https://doi.org/10.1016/j.foreco.2008.11.021
Kleemann, J., Steinhoff-Knopp, B., Eisenhauer, N., Ristok, C., Xylander, W. E., & Burkhard, B. (2025). The unexplored links between soil, soil biodiversity, and soil-related ecosystem services:–This paper is part of the special collection ‘Faktencheck Artenvielfalt’. Soil Organisms, 97(1), 5–25. https://doi.org/10.25674/442
Knapp, S., Schmauck, S., & Zehnsdorf, A. (2019). Biodiversity impact of green roofs and constructed wetlands as progressive eco-technologies in urban areas. Sustainability (Switzerland), 11(20). https://doi.org/10.3390/su11205846
Koehler, H. H. (2000). Natural regeneration and succession—Results from a 13 years study with reference to mesofauna and vegetation, and implications for management. Landscape and Urban Planning, 51(2–4), 123–130. https://doi.org/10.1016/S0169-2046(00)00103-1
Koehler, H. H., & Müller, J. (2003). Entwicklung der Biodiversität während einer 20jährigen Sukzession als Grundlage für Managementmaßnahmen - Abschlussbericht.
Kohyt, J., & Skubała, P. (2020). Oribatid mite (Acari: Oribatida) communities reveal the negative impact of the red oak (Quercus rubra L.) on soil fauna in Polish commercial forests. Pedobiologia, 79, 150594. https://doi.org/10.1016/j.pedobi.2019.150594
Kowarik, I., Buchholz, S., von der Lippe, M., & Seitz, B. (2016). Biodiversity functions of urban cemeteries: Evidence from one of the largest Jewish cemeteries in Europe. Urban Forestry and Urban Greening, 19, 68–78. https://doi.org/10.1016/j.ufug.2016.06.023
Lang, C., Seven, J., & Polle, A. (2011). Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza, 21(4), 297–308. https://doi.org/10.1007/s00572-010-0338-y
Lehmitz, R. (2014). The oribatid mite community of a German peatland in 1987 and 2012 – effects of anthropogenic desiccation and afforestation. Soil Organisms, 86(2), 131–145.
Lehmitz, R., Haase, H., Otte, V., & Russell, D. J. (2020). Bioindication in peatlands by means of multi-taxa indicators (Oribatida, Araneae, Carabidae, Vegetation). Ecological Indicators, 109, 105837. https://doi.org/10.1016/j.ecolind.2019.105837
Lehmitz, R., Russell, D. J., Hohberg, K., Christian, A., & Xylander, W. E. R. (2011). Wind dispersal of oribatid mites as a mode of migration. Pedobiologia, 54(3), 201–207. https://doi.org/10.1016/j.pedobi.2011.01.002
Lessel, T., Marx, M. T., & Eisenbeis, G. (2011). Effects of ecological flooding on the temporal and spatial dynamics of carabid beetles (Coleoptera, Carabidae) and springtails (Collembola) in a polder habitat. ZooKeys, 100, 421–446. https://doi.org/10.3897/zookeys.100.1538
Li, L., Xu, H., Zhang, Q., Zhan, Z., Liang, X., & Xing, J. (2024). Estimation methods of wetland carbon sink and factors influencing wetland carbon cycle: A review. Carbon Research, 3(1), 50. https://doi.org/10.1007/s44246-024-00135-y
Madre, F., Vergnes, A., Machon, N., & Clergeau, P. (2013). A comparison of 3 types of green roof as habitats for arthropods. Ecological Engineering, 57, 109–117. https://doi.org/10.1016/j.ecoleng.2013.04.029
Maraun, M., Augustin, D., Müller, J., Bässler, C., & Scheu, S. (2014). Changes in the community composition and trophic structure of microarthropods in sporocarps of the wood decaying fungus Fomitopsis pinicola along an altitudinal gradient. Applied Soil Ecology, 84, 16–23. https://doi.org/10.1016/j.apsoil.2014.06.004
Markkula, I. (1986). Comparison of the communities of the oribatids (Acari: Cryptostigmata) of virgin and forest-ameliorated pine bogs. Annales Zoologici Fennici, 23, 33–38.
Matthewman, W., & Pielou, D. (1971). Arthropods inhabiting the sporophores of Fomes fomentarius (Polyporaceae) in Gatinau Park. The Canadian Entomologist, 103(6), 775–847. https://doi.org/10.4039/Ent103775-6
Minnich, C., Persoh, D., Poll, C., & Borken, W. (2021). Changes in chemical and microbial soil parameters following 8 years of deadwood decay: An experiment with logs of 13 tree species in 30 forests. Ecosystems, 24, 955–967. 24(4), 955–967. https://doi.org/10.1007/s10021-020-00562-z
Mody, K., Lerch, D., Müller, A. K., Simons, N. K., Blüthgen, N., & Harnisch, M. (2020). Flower power in the city: Replacing roadside shrubs by wildflower meadows increases insect numbers and reduces maintenance costs. PLoS ONE, 15(6), 1–29. https://doi.org/10.1371/journal.pone.0234327
Müller, J., Strätz, C., & Hothorn, T. (2005). Habitat factors for land snails in European beech forests with a special focus on coarse woody debris. European Journal of Forest Research, 124(3), 233–242. https://doi.org/10.1007/s10342-005-0071-9
Nazari, M., Pausch, J., Bickel, S., Bilyera, N., Rashtbari, M., Razavi, B. S., … & Zarebanadkouki, M. (2023). Keeping thinning-derived deadwood logs on forest floor improves soil organic carbon, microbial biomass, and enzyme activity in a temperate spruce forest. European Journal of Forest Research, 142(2), 287–300. https://doi.org/10.1007/s10342-022-01522-z
Neu, A., Allspach, A., Baber, K., Decker, P., & Xylander, W. E. R. (2022). BODENTIERhoch4 : A new citizen science tool for the determination and monitoring of soil organisms. Soil Organisms, 94(1), 29–39. https://doi.org/10.25674/so94iss1id181
Neuhaus, R., Stelter, T., & Kiehl, K. (1999). Sedimentation in salt marshes affected by grazing regime, topographical patterns and regional differences. Senckenbergiana Maritima, 29(SUPPL.), 113–116. https://doi.org/10.1007/bf03043134
Nolte, S., Wanner, A., Stock, M., & Jensen, K. (2019). Elymus athericus encroachment in Wadden Sea salt marshes is driven by surface elevation change. Applied Vegetation Science, 22(3), 454–464. https://doi.org/10.1111/avsc.12443
Penone, C., Allan, E., Soliveres, S., Felipe-Lucia, M. R., Gossner, M. M., Seibold, S., … & Fischer, M. (2019). Specialisation and diversity of multiple tropic groups are promoted by different forest features. Ecology Letters, 22(1), 170–180. https://doi.org/10.1111/ele.13182
Petillon, J., Ysnel, F., Canard, A., & Lefeuvre, J. (2005). Impact of an invasive plant (Elymus athericus) on the conservation value of tidal salt marshes in western France and implications for management : Responses of spider populations. Biological Conservation, 126(126), 103–117. https://doi.org/10.1016/j.biocon.2005.05.003
Pétremand, G., Chittaro, Y., Braaker, S., Brenneisen, S., Gerner, M., Obrist, M. K., … & Moretti, M. (2018). Ground beetle (Coleoptera: Carabidae) communities on green roofs in Switzerland: synthesis and perspectives. Urban Ecosystems, 21(1), 119–132. https://doi.org/10.1007/s11252-017-0697-7
Plum, N. M., & Filser, J. (2005). Floods and drought: Responses of earthworms and potworms (Oligocaeta: Lumbricidae, Enchytraeidae) to hydrological extremes in wet grasland. Pedobiologia, 49(5), 443–453. https://doi.org/10.1016/j.pedobi.2005.05.004
Pollierer, M. M., Klarner, B., Ott, D., Digel, C., Ehnes, R. B., Eitzinger, B., … & Scheu, S. (2021). Diversity and functional structure of soil animal communities suggest soil animal food webs to be buffered against changes in forest land use. Oecologia, 196(1), 195–209. https://doi.org/10.1007/s00442-021-04910-1
Pollierer, M. M., & Scheu, S. (2017). Driving factors and temporal fluctuation of Collembola communities and reproductive mode across forest types and regions. Ecology and Evolution, 7(12), 4390–4403. https://doi.org/10.1002/ece3.3035
Prada-Salcedo, L., Goldmann, K., Heintz-Buschart, A., Reitz, T., Wambsganss, J., Bauhus, J., & Buscot, F. (2021). Fungal guilds and soil functionality respond to tree community traits rather than to tree diversity in European forests. Molecular Ecology, 30(2), 572–591. https://doi.org/10.1111/mec.15749
Proske, A., Lokatis, S., & Rolff, J. (2022). Impact of mowing frequency on arthropod abundance and diversity in urban habitats: A meta-analysis. Urban Forestry and Urban Greening, 76, 127714. https://doi.org/10.1016/j.ufug.2022.127714
Renella, G. (2020). Evolution of physico-chemical properties, microbial biomass and microbial activity of an urban soil after de-sealing. Agriculture (Switzerland), 10(12), 1–11. https://doi.org/10.3390/agriculture10120596
Richter, A., Ewald, M., Hemmerling, C., Schöning, I., Bauhus, J., Schall, P., & Ruess, L. (2023). Effects of management intensity, soil properties and region on the nematode communities in temperate forests in Germany. Forest Ecology and Management, 529, 120675. https://doi.org/10.1016/j.foreco.2022.120675
Roscher, C., Schumacher, J., Baade, J., Wilcke, W., Gleixner, G., Weisser, W. W., … & Schulze, E. D. (2004). The role of biodiversity for element cycling and trophic interactions: An experimental approach in a grassland community. Basic and Applied Ecology, 5(2), 107–121. https://doi.org/10.1078/1439-1791-00216
Rumble, H., & Gange, A. C. (2017). Microbial inoculants as a soil remediation tool for extensive green roofs. Ecological Engineering, 102(0), 188–198. https://doi.org/10.1016/j.ecoleng.2017.01.025
Rumm, A., Foeckler, F., Deichner, O., Scholz, M., & Gerisch, M. (2016). Dyke-slotting initiated rapid recovery of habitat specialists in floodplain mollusc assemblages of the Elbe River, Germany. Hydrobiologia, 771(1), 151–163. https://doi.org/10.1007/s10750-015-2627-0
Russell, D. J., & Gergócs, V. (2019). Forest-management types similarly influence soil collembolan communities throughout regions in Germany – A data bank analysis. Forest Ecology and Management, 434, 49–62. https://doi.org/10.1016/j.foreco.2018.11.050
Russell, D. J., & Griegel, A. (2006). Influence of variable inundation regimes on soil Collembola. Pedobiologia, 50(2), 165–175. https://doi.org/10.1016/j.pedobi.2006.02.002
Russell, D. J., Schick, H., & Nähring, D. (2002). Reactions of soil Collembolan communities to inundation in floodplain ecosystems of the Upper Rhine valley. In G. Broll, W. Merbach, & E.-M. Pfeiffer (Eds.), Wetlands in Central Europe - Soil Organisms, Soil Ecological Processes and Trace Gas Emissions (1st ed., pp. 35–70). Berlin, Heidelberg, New York: Springer Verlag.
Salamon, J.-A., & Alphei, J. (2009). The Collembola community of a Central European forest: influence of the tree species composition. European Journal of Soil Biology, 45(3), 199–206.
Salamon, J.-A., & Wolters, V. (2009). Nematoda response to forest conversion. European Journal of Soil Biology, 45(2), 184–191. https://doi.org/10.1016/j.ejsobi.2008.09.014
Salmane, I., & Spungis, V. (2008). Mites in Baltic sea coastal habitats (Akmensrags, Latvia) with special reference to Mesostigmata. Acarologia, 48(3–4), 163–170.
Schittko, C., Onandia, G., Bernard-Verdier, M., Heger, T., Jeschke, J. M., Kowarik, I., … & Joshi, J. (2022). Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. Journal of Ecology, 110(4), 916–934. https://doi.org/10.1111/1365-2745.13852
Schrader, S., & Böning, M. (2006). Soil formation on green roofs and its contribution to urban biodiversity with emphasis on Collembolans. Pedobiologia, 50(4), 347–356. https://doi.org/10.1016/j.pedobi.2006.06.003
Schrader, S., & Steiner, S. (2002). Substrate zur Dachbegrünung: Ein Lebensraum für Regenwürmer? Neue Landschaft, 2, 51–55.
Schreiadler, E. L. P. (2023). EU Life Projekt Schreiadler. Retrieved from https://www.lifeschreiadler.de/ (aufgerufen am 11.08.2023)
Sehrt, M., Bossdorf, O., Freitag, M., & Bucharova, A. (2020). Less is more! Rapid increase in plant species richness after reduced mowing in urban grasslands. Basic and Applied Ecology, 42, 47–53. https://doi.org/10.1016/j.baae.2019.10.008
Seiberling, S., Schultz, R., & Müller-Motzfeld, G. (2023). Restoration of Salt Meadows at the Baltic Sea Coast: The De-Embankment Experiment at Karrendorf meadows. In Terrestrial Coastal Ecosystems in Germany and Climate Change. Mossakowski, D., & U. Irmler, eds., Springer, 2023, pp. 415–430.
Seiberling, S., & Stock, M. (2009). Renaturierung von Salzgrasländern bzw. Salzwiesen der Küsten. Renaturierung von Ökosystemen in Mitteleuropa, 183–208. https://doi.org/10.1007/978-3-8274-2161-6_7
Seibold, S., Bässler, C., Brandl, R., Büche, B., Szallies, A., Thorn, S., … & Müller, J. (2016). Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. Journal of Applied Ecology, 53(3), 934–943. https://doi.org/10.1111/1365-2664.12607
Silvan, N., Laiho, R., & Vasander, H. (2000). Changes in mesofauna abundance in peat soils drained for forestry. Forest Ecology and Management, 133(1–2), 127–133. https://doi.org/10.1016/S0378-1127(99)00303-5
Sławski, M., Stebel, A., & Sławska, M. (2022). Spontaneous regeneration of Collembola assemblages in a raised bog after human-induced disturbance. Applied Soil Ecology, 169. https://doi.org/10.1016/j.apsoil.2021.104233
Standen, V., & Latter, P. M. (1977). Distribution of a population of Cognettia sphagnetorum (Enchytraeidae) in relation to microhabitats in a blanket bog. Journal of Animal Ecology, 46(1), 213–229. https://doi.org/10.2307/3957
Stokland, J., Siitonen, J., & Jonsson, B. (2012). Biodiversity in dead wood. Cambridge University Press.
Succow Foundation. (2023). Warum Landschaftspflege wichtig für den Naturschutz ist. Retrieved from https://www.succow-stiftung.de/succow-stiftung/aktuelles/detail/warum-landschaftspflege-wichtig-fuer-naturschutz-ist (aufgerufen am 08.12.2023)
Szabó, B., Korányi, D., Gallé, R., Lövei, G. L., Bakonyi, G., & Batáry, P. (2023). Urbanization decreases species richness, and increases abundance in dry climates whereas decreases in wet climates: A global meta-analysis. Science of the Total Environment, 859, 160145. https://doi.org/10.1016/j.scitotenv.2022.160145
Tegetmayer, C., Barthelmes, K., Busse, S., & Barthelmes, A. (2021). Aggregierte Karte der organischen Böden Dutschlands. Greifswald Moor Centrum Schriftenreihe 1.2021 (2021): 10.
Tockner, K., Pusch, M., Borchardt, D., & Lorang, M. S. (2010). Multiple stressors in coupled river-floodplain ecosystems. Freshwater Biology, 55, 135–151. https://doi.org/10.1111/j.1365-2427.2009.02371.x
Topp, W., Kappes, H., Kulfan, J., & Zach, P. (2006). Distribution pattern of woodlice (Isopoda) and millipedes (Diplopoda) in four primeval forests of the Western Carpathians (Central Slovakia). Soil Biology & Biochemistry, 38(1), 43–50. https://doi.org/10.1016/j.soilbio.2005.04.012
Toschki, A., Burkhardt, U., Haase, H., Höfer, H., Jänsch, S., Oellers, J., … & Russell, D. J. (2021). Die Edaphobase-Länderstudien - Synökologische Untersuchungen von Bodenorganismen in einem Biotop- und Standortgradienten in Deutschland 2014 – 2018. Peckiana, 14, 1–367.
Tresch, S., Frey, D., Bayon, R. C. Le, Mäder, P., Stehle, B., Fliessbach, A., & Moretti, M. (2019). Direct and indirect effects of urban gardening on aboveground and belowground diversity influencing soil multifunctionality. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-46024-y
UBA, U. (2023). Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll.
Unterweger, P. (2018). Die “Initiative Bunte Wiese”: ein neues Mahdkonzept als Beitrag zur Reduzierung des Instektensterbens. Mitteilungen Der Deutschen Gesellschaft Für Allgemeine Angewandte Entomologie, 21, 33–36.
Valéry, L., Bouchard, V., & Lefeuvre, J.-C. (2004). Impact of the invasive native species Elymus athericus on carbon pools in a salt marsh. Wetlands, 24(2), 268–276. https://doi.org/10.1672/0277-5212(2004)024[0268:IOTINS]2.0.CO;2
Wagg, C., Bender, S. F., Widmer, F., & Van Der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111(14), 5266–5270. https://doi.org/10.1073/pnas.1320054111
Wanner, A. (2009). Management, biodiversity and restoration potential of salt grassland vegetation of the Baltic Sea: Analyses along a complex ecological gradient. Universität Hamburg. Thesis.
Ward, J. V., Tockner, K., & Schiemer, F. (1999). Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research & Management, 15(1–3), 125–139. https://doi.org/10.1002/(SICI)1099-1646(199901/06)15:1/3<125::AID-RRR523>3.0.CO;2-E
Wirth, C., Bruelheide, H., Farwig, N., Marx, J., & Settele, J. (2024). Faktencheck Artenvielfalt. oekom Verlag. https://doi.org/10.14512/9783987263361
Wolters, M., Garbutt, A., & Bakker, J. P. (2005). Salt-marsh restoration: Evaluating the success of de-embankments in north-west Europe. Biological Conservation, 123(2), 249–268. https://doi.org/10.1016/j.biocon.2004.11.013
Xylander, W. E. R., & Glante, F. (2025). Deficits, needs, solution attempts and transfer formats for implementing a “Soil Biodiversity Awareness” in Germany. Soil Organisms, 97(1), 27–36. https://doi.org/10.25674/458
Zak, D., Goldhammer, T., Cabezas, A., Gelbrecht, J., Gurke, R., Wagner, C., … McInnes, R. (2018). Top soil removal reduces water pollution from phosphorus and dissolved organic matter and lowers methane emissions from rewetted peatlands. Journal of Applied Ecology, 55(1), 311–320. https://doi.org/10.1111/1365-2664.12931
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nicole Scheunemann, Luise Xiaqian Doms-Grimm, Christian Ristok, Ricarda Lehmitz

This work is licensed under a Creative Commons Attribution 4.0 International License.
Soil Organisms is committed to fair open access publishing. All articles are available online without publication fees. Articles published from Vol. 96 No. 3 (2024) onwards are licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Articles published from Vol. 80 No. 1 through Vol. 96 No. 2 are available under the previous terms, allowing non-commercial, private, and scientific use.