Soil fauna community body size structure mediates litter loss responses to temperature and plant litter treatments in ecological microcosms

Authors

DOI:

https://doi.org/10.25674/444

Keywords:

soil mesofauna, community structure, functional traits, litter decomposition, ecosystem functioning

Abstract

Litter decomposition is strongly influenced by soil communities, composed of soil biota which display large variations in body size. Body size plays a central role in metabolism and mediates the functional potential of soil biota, but the influence of soil community body size structure on litter decomposition is unresolved. Here, we conduct ecological microcosm experiments to investigate how soil fauna community body size structure mediates litter loss in response to temperature and plant litter availability. Community-weighted mean body mass (CWMBM) calculations are taken as an indicator of structural shifts in soil fauna community body size across treatments. Structural equation models revealed that CWMBM was strongly influenced by Collembola body mass and exhibited a non-linear response to temperature, with convergence at intermediate temperatures. Collembola CWMBM mediated a portion of the temperature effect on CWMBM, while Nematode responses were opposite and weakly correlated. Litter loss was jointly driven by CWMBM and plant litter input, with no direct effect of temperature. Sensitivity and mediation analyses confirmed the central role of Collembola in linking temperature to soil fauna community shifts but identified plant litter availability as the dominant driver of litter loss. Linear mixed effects models of relative litter loss, however, highlight a key role of the soil fauna community across temperature treatments when the effects of plant litter availability are controlled.  Our experiment included extreme low plant litter availability (0 g) and high temperature (30°C) treatments to detect critical thresholds for the functioning of soil communities, but high variation in temperature responses between 20 and 30°C require exploration in future studies. Although our experiment did not isolate body size effects independently of treatments, our findings suggest an important role of soil fauna body size structure in soil functioning. Future work, experiments and statistical models should be designed to test the causal mechanisms driving emergent shifts in soil community structure and soil function in response to environmental perturbations. Such an understanding could guide management practices which buffer against potentially detrimental effects of environmental change. 

Downloads

Download data is not yet available.

References

Andriuzzi, W. S., Franco, A. L. C., Ankrom, K. E., Cui, S., de Tomasel, C. M., Guan, P., Gherardi, L. A., Sala, O. E. & Wall, D. H. (2020). Body size structure of soil fauna along geographic and temporal gradients of precipitation in grasslands. Soil Biology and Biochemistry, 140, 107638. https://doi.org/10.1016/j.soilbio.2019.107638

Andriuzzi, W. S. & Wall, D. H. (2018). Grazing and resource availability control soil nematode body size and abundance–mass relationship in semi-arid grassland. Journal of Animal Ecology, 87(5), 1407–1417. https://doi.org/10.1111/1365-2656.12858

Angilletta, M. J., Jr., Steury, T. D. & Sears, M. W. (2004). Temperature, Growth Rate, and Body Size in Ectotherms: Fitting Pieces of a Life-History Puzzle1. Integrative and Comparative Biology, 44(6), 498–509. https://doi.org/10.1093/icb/44.6.498

Balogh, J. & Balogh, P. (1992). The oribatid mites genera of the world (Vol. 1). Hungarian National Museum Press.

Bardgett, R. D. & Caruso, T. (2020). Soil microbial community responses to climate extremes: Resistance, resilience and transitions to alternative states. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1794), 20190112. https://doi.org/10.1098/rstb.2019.0112

Bartoń, K. (2023, March 22). MuMIn: Multi-Model Inference. R Package Version 1.47.5. https://cran.r-project.org/web/packages/MuMIn/index.html

Beare, M. H., Parmelee, R. W., Hendrix, P. F., Cheng, W., Coleman, D. C. & Crossley Jr., D. A. (1992). Microbial and Faunal Interactions and Effects on Litter Nitrogen and Decomposition in Agroecosystems. Ecological Monographs, 62(4), 569–591. https://doi.org/10.2307/2937317

Bligh, E. G. & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099

Bokhorst, S., Phoenix, G. K., Bjerke, J. W., Callaghan, T. V., Huyer-Brugman, F. & Berg, M. P. (2012). Extreme winter warming events more negatively impact small rather than large soil fauna: Shift in community composition explained by traits not taxa. Global Change Biology, 18(3), 1152–1162. https://doi.org/10.1111/j.1365-2486.2011.02565.x

Bonfanti, J., Hedde, M., Joimel, S., Krogh, P. H., Violle, C., Nahmani, J. & Cortet, J. (2018). Intraspecific body size variability in soil organisms at a European scale: Implications for functional biogeography. Functional Ecology, 32(11), 2562–2570. https://doi.org/10.1111/1365-2435.13194

Briones, M. J. I. (2014). Soil fauna and soil functions: A jigsaw puzzle. Frontiers in Environmental Science, 2. https://www.frontiersin.org/articles/10.3389/fenvs.2014.00007

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85(7), 1771-1789. https://doi.org/10.1890/03-9000

Chen, J., Zhang, Y., Kuzyakov, Y., Wang, D. & Olesen, J. E. (2023). Challenges in upscaling laboratory studies to ecosystems in soil microbiology research. Global Change Biology, 29(3), 569–574. https://doi.org/10.1111/gcb.16537

Cifuentes-Croquevielle, C., Stanton, D. E. & Armesto, J. J. (2020). Soil invertebrate diversity loss and functional changes in temperate forest soils replaced by exotic pine plantations. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-64453-y

Coulibaly, S. F. M., Winck, B. R., Akpa-Vinceslas, M., Mignot, L., Legras, M., Forey, E. & Chauvat, M. (2019). Functional Assemblages of Collembola Determine Soil Microbial Communities and Associated Functions. Frontiers in Environmental Science, 7. https://www.frontiersin.org/articles/10.3389/fenvs.2019.00052

Delgado-Baquerizo, M., Reich, P. B., Trivedi, C., Eldridge, D. J., Abades, S., Alfaro, F. D., Bastida, F., Berhe, A. A., Cutler, N. A., Gallardo, A. et al. (2020). Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4(2), 210–220. https://doi.org/10.1038/s41559-019-1084-y

Douce, G. K. (1976). Biomass of Soil Mites (Acari) in Arctic Coastal Tundra. Oikos, 27(2), 324–330. https://doi.org/10.2307/3543914

Evans, G. O. & Till, W. M. (1979). Mesostigmatic mites of Britain and Ireland (Chelicerata: Acari-Parasitiformes): An introduction to their external morphology and classification. The Transactions of the Zoological Society of London, 35(2), 139–262. https://doi.org/10.1111/j.1096-3642.1979.tb00059.x

Evans, L. E., Hirst, A. G., Kratina, P. & Beaugrand, G. (2020). Temperature-mediated changes in zooplankton body size: Large scale temporal and spatial analysis. Ecography, 43(4), 581–590. https://doi.org/10.1111/ecog.04631

Frostegård, Å., Tunlid, A. & Bååth, E. (1991). Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods, 14(3), 151–163. https://doi.org/10.1016/0167-7012(91)90018-L

Frouz, J., Roubíčková, A., Heděnec, P. & Tajovský, K. (2015). Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. European Journal of Soil Biology, 68, 18–24. https://doi.org/10.1016/j.ejsobi.2015.03.002

García-Palacios, P., Maestre, F. T., Kattge, J. & Wall, D. H. (2013). Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters, 16(8), Article 8.

Garland, G., Edlinger, A., Banerjee, S., Degrune, F., García-Palacios, P., Pescador, D. S., Herzog, C., Romdhane, S., Saghai, A., Spor, A. et al. (2021). Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nature Food, 2(1), Article 1. https://doi.org/10.1038/s43016-020-00210-8

Ge, B., Zhou, J., Yang, R., Jiang, S., Yang, L. & Tang, B. (2021). Lower land use intensity promoted soil macrofaunal biodiversity on a reclaimed coast after land use conversion. Agriculture, Ecosystems & Environment, 306, 107208. https://doi.org/10.1016/j.agee.2020.107208

Geisen, S. (2016). The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biology and Biochemistry, 102, 22–25. https://doi.org/10.1016/j.soilbio.2016.06.013

Gill, A. L. & Finzi, A. C. (2016). Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecology Letters, 19(12), 1419-1428. https://doi.org/10.1111/ele.12690

Girkin, N. T., Lopes dos Santos, R. A., Vane, C. H., Ostle, N., Turner, B. L. & Sjögersten, S. (2020). Peat Properties, Dominant Vegetation Type and Microbial Community Structure in a Tropical Peatland. Wetlands, 40(5), 1367–1377. https://doi.org/10.1007/s13157-020-01287-4

Hanisch, J., Engell, I., Linsler, D., Scheu, S. & Potthoff, M. (2022). The role of Collembola for litter decomposition under minimum and conventional tillage. Journal of Plant Nutrition and Soil Science, 185(4), 529–538. https://doi.org/10.1002/jpln.202200077

Hättenschwiler, S., Tiunov, A. V. & Scheu, S. (2005). Biodiversity and Litter Decomposition in Terrestrial Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36(1), 191–218. https://doi.org/10.1146/annurev.ecolsys.36.112904.151932

Heděnec, P., Jiménez, J. J., Moradi, J., Domene, X., Hackenberger, D., Barot, S., Frossard, A., Oktaba, L., Filser, J., Kindlmann, P. & Frouz, J. (2022). Global distribution of soil fauna functional groups and their estimated litter consumption across biomes. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-21563-z

Hódar, J. A. (1996). The use of regression equations for estimation of arthropod biomass in ecological studies. Acta (Ecologica, 1996, 17 (5), 421, 433.

Isaac, M. E., Gordon, A. M., Thevathasan, N., Oppong, S. K. & Quashie-Sam, J. (2005). Temporal changes in soil carbon and nitrogen in west African multistrata agroforestry systems: A chronosequence of pools and fluxes. Agroforestry Systems, 65(1), 23–31. https://doi.org/10.1007/s10457-004-4187-6

Joergensen, R. G. (2022). Phospholipid fatty acids in soil—Drawbacks and future prospects. Biology and Fertility of Soils, 58(1), 1–6. https://doi.org/10.1007/s00374-021-01613-w

Johnston, A. S. A. (2019). Land management modulates the environmental controls on global earthworm communities. Global Ecology and Biogeography, 28(12), 1787–1795. https://doi.org/10.1111/geb.12992

Johnston, A. S. A. (2024). Predicting emergent animal biodiversity patterns across multiple scales. Global Change Biology, 30(7), e17397. https://doi.org/10.1111/gcb.17397

Johnston, A. S. A. & Sibly, R. M. (2018). The influence of soil communities on the temperature sensitivity of soil respiration. Nature Ecology & Evolution, 2(10), 1597-1602. https://doi.org/10.1038/s41559-018-0648-6

Johnston, A. S. A. & Sibly, R. M. (2020). Multiple environmental controls explain global patterns in soil animal communities. Oecologia, 192(4), 1047-1056. https://doi.org/10.1007/s00442-020-04640-w

Joly, F.-X., Scherer-Lorenzen, M. & Hättenschwiler, S. (2023). Resolving the intricate role of climate in litter decomposition. Nature Ecology & Evolution, 7(2), https://doi.org/10.1038/s41559-022-01948-z

Kalúz, S. & Fenďa, P. (2005). Mites (Acari: Mesostigmata) of the family Ascidae of Slovakia. Institute of Zoology, Slovak Academy of Sciences Bratislava.

Kitagami, Y., Tanikawa, T. & Matsuda, Y. (2020). Effects of microhabitats and soil conditions on structuring patterns of nematode communities in Japanese cedar (Cryptomeria japonica) plantation forests under temperate climate conditions. Soil Biology and Biochemistry, 151, 108044. https://doi.org/10.1016/j.soilbio.2020.108044

Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., Heal, O. W. & Dhillion, S. (1997). Soil function in a changing world: The role of invertebrate ecosystem engineers. European Journal of Soil Biology, 33(4), 159-193.

Luan, L., Jiang, Y., Cheng, M., Dini-Andreote, F., Sui, Y., Xu, Q., Geisen, S. & Sun, B. (2020). Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nature Communications, 11(1), 6406. https://doi.org/10.1038/s41467-020-20271-4

Murphy, J. & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

O’Gorman, E. J., Zhao, L., Pichler, D. E., Adams, G., Friberg, N., Rall, B. C., Seeney, A., Zhang, H., Reuman, D. C. & Woodward, G. (2017). Unexpected changes in community size structure in a natural warming experiment. Nature Climate Change, 7(9), 659-663. https://doi.org/10.1038/nclimate3368

Olsen, S. R. (1954). Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. U.S. Department of Agriculture.

Petersen, H. & Luxton, M. (1982). A Comparative Analysis of Soil Fauna Populations and Their Role in Decomposition Processes. Oikos, 39(3), 288-388. https://doi.org/10.2307/3544689

Phillips, H. R. P., Bach, E. M., Bartz, M. L. C., Bennett, J. M., Beugnon, R., Briones, M. J. I., Brown, G. G., Ferlian, O., Gongalsky, K. B., Guerra, C. A. et al. (2021). Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 8(1), 136. https://doi.org/10.1038/s41597-021-00912-z

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., Ranke, J. & R Core Team. (2023, November 27). nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-164. https://cran.r-project.org/web/packages/nlme/index.html

Potapov, A. M., Klarner, B., Sandmann, D., Widyastuti, R. & Scheu, S. (2019). Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. Journal of Animal Ecology, 88(12), 1845–1859. https://doi.org/10.1111/1365-2656.13027

Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156(3), 75–83. https://doi.org/10.1016/j.geoderma.2010.02.003

R Core Team. (2024). R: The R Project for Statistical Computing. https://www.r-project.org/

Roper, W. R., Robarge, W. P., Osmond, D. L. & Heitman, J. L. (2019). Comparing Four Methods of Measuring Soil Organic Matter in North Carolina Soils. Soil Science Society of America Journal, 83(2), 466–474. https://doi.org/10.2136/sssaj2018.03.0105

Ruess, L. & Chamberlain, P. M. (2010). The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biology and Biochemistry, 42(11), 1898–1910. https://doi.org/10.1016/j.soilbio.2010.07.020

Rusek, J. (1998). Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity & Conservation, 7(9), 1207–1219. https://doi.org/10.1023/A:1008887817883

Sagi, N. & Hawlena, D. (2023). Climate dependence of the macrofaunal effect on litter decomposition—A global meta-regression analysis. Ecology Letters, 27(1), e14333. https://doi.org/10.1111/ele.14333

Sauvadet, M., Chauvat, M., Cluzeau, D., Maron, P.-A., Villenave, C. & Bertrand, I. (2016). The dynamics of soil micro-food web structure and functions vary according to litter quality. Soil Biology and Biochemistry, 95, 262–274. https://doi.org/10.1016/j.soilbio.2016.01.003

Siebert, J., Ciobanu, M., Schädler, M. & Eisenhauer, N. (2020). Climate change and land use induce functional shifts in soil nematode communities. Oecologia, 192(1), 281–294. https://doi.org/10.1007/s00442-019-04560-4

Siebert, J., Sünnemann, M., Hautier, Y., Risch, A. C., Bakker, J. D., Biederman, L., Blumenthal, D. M., Borer, E. T., Bugalho, M. N., Broadbent, A. A. D. et al. (2023). Drivers of soil microbial and detritivore activity across global grasslands. Communications Biology, 6(1), 1220. https://doi.org/10.1038/s42003-023-05607-2

Skvarla, M. J., Fisher, J. R. & Dowling, A. P. G. (2014). A review of Cunaxidae (Acariformes, Trombidiformes): Histories and diagnoses of subfamilies and genera, keys to world species, and some new locality records. ZooKeys, 418, 1–103. https://doi.org/10.3897/zookeys.418.7629

Sünnemann, M., Beugnon, R., Breitkreuz, C., Buscot, F., Cesarz, S., Jones, A., Lehmann, A., Lochner, A., Orgiazzi, A., Reitz, T. et al. (2023). Climate change and cropland management compromise soil integrity and multifunctionality. Communications Earth & Environment, 4(1), 394. https://doi.org/10.1038/s43247-023-01047-2

Swift, M. J. (1979). Decomposition in terrestrial ecosystems. University of California Press.

Szanser, M., Ilieva-Makulec, K., Kajak, A., Górska, E., Kusińska, A., Kisiel, M., Olejniczak, I., Russel, S., Sieminiak, D. & Wojewoda, D. (2011). Impact of litter species diversity on decomposition processes and communities of soil organisms. Soil Biology and Biochemistry, 43(1), 9–19. https://doi.org/10.1016/j.soilbio.2010.08.031

Tabi, A., Petchey, O. L. & Pennekamp, F. (2019). Warming reduces the effects of enrichment on stability and functioning across levels of organisation in an aquatic microbial ecosystem. Ecology Letters, 22(7), 1061–1071. https://doi.org/10.1111/ele.13262

Tan, H., Hirst, A. G., Atkinson, D. & Kratina, P. (2021). Body size and shape responses to warming and resource competition. Functional Ecology, 35(7), 1460–1469. https://doi.org/10.1111/1365-2435.13789

Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, L. V., Vasco-Palacios, A. M., Thu, P. Q. et al. (2014). Global diversity and geography of soil fungi. Science, 346(6213), 1256688. https://doi.org/10.1126/science.1256688

Thakur, M. P., Sigurðsson, B. D., Sigurðsson, P. & Holmstrup, M. (2023). Warming shifts the biomass distribution of soil microarthropod communities. Soil Biology and Biochemistry, 177, 108894. https://doi.org/10.1016/j.soilbio.2022.108894

van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., de Goede, R. G. M., Adams, B. J., Ahmad, W., Andriuzzi, W. S. et al. (2019). Soil nematode abundance and functional group composition at a global scale. Nature, 572(7768), 194-198. https://doi.org/10.1038/s41586-019-1418-6

van den Hoogen, J., Geisen, S., Wall, D. H., Wardle, D. A., Traunspurger, W., de Goede, R. G. M., Adams, B. J., Ahmad, W., Ferris, H., Bardgett, R. D. et al. (2020). A global database of soil nematode abundance and functional group composition. Scientific Data, 7(1), 103. https://doi.org/10.1038/s41597-020-0437-3

Wall, D. H., Bradford, M. A., St. John, M. G., Trofymow, J. A., Behan-Pelletier, V., BIGNELL, D. E., Dangerfield, J. M., Parton, W. J., Rusek, J. & Voigt, W. (2008). Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Global Change Biology, 14(11), 2661-2677.

Wardle, D. A., Yeates, G. W., Barker, G. M. & Bonner, K. I. (2006). The influence of plant litter diversity on decomposer abundance and diversity. Soil Biology and Biochemistry, 38(5), 1052–1062. https://doi.org/10.1016/j.soilbio.2005.09.003

Yin, R., Kardol, P., Eisenhauer, N. & Schädler, M. (2022). Land-use intensification reduces soil macrofauna biomass at the community but not individual level. Agriculture, Ecosystems & Environment, 337, 108079. https://doi.org/10.1016/j.agee.2022.108079

Yin, R., Siebert, J., Eisenhauer, N. & Schädler, M. (2020). Climate change and intensive land use reduce soil animal biomass via dissimilar pathways. eLife, 9, e54749. https://doi.org/10.7554/eLife.54749

Zelles, L. (1997). Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere, 35(1), 275–294. https://doi.org/10.1016/S0045-6535(97)00155-0

Zhao, Q., Van den Brink, P. J., Carpentier, C., Wang, Y. X., Rodríguez-Sánchez, P., Xu, C., Vollbrecht, S., Gillissen, F., Vollebregt, M. & Wang, S. (2019). Horizontal and vertical diversity jointly shape food web stability against small and large perturbations. Ecology Letters, 22(7), 1152-1162. https://doi.org/10.1111/ele.13282

Zheng, L., Wu, S., Lu, L., Li, T., Liu, Z., Li, X. & Li, H. (2023). Unraveling the interaction effects of soil temperature and moisture on soil nematode community: A laboratory study. European Journal of Soil Biology, 118, 103537. https://doi.org/10.1016/j.ejsobi.2023.103537

Zhu, G., Luan, L., Zhou, S., Dini-Andreote, F., Bahram, M., Yang, Y., Geisen, S., Zheng, J., Wang, S. & Jiang, Y. (2024). Body size mediates the functional potential of soil organisms by diversity and community assembly across soil aggregates. Microbiological Research, 282, 127669. https://doi.org/10.1016/j.micres.2024.127669

Published

2025-10-20

Issue

Section

RESEARCH ARTICLES

How to Cite

Li, Z., Girkin, N. T., Hannam, J. A. ., & Johnston, A. S. (2025). Soil fauna community body size structure mediates litter loss responses to temperature and plant litter treatments in ecological microcosms. Soil Organisms, 97(3). https://doi.org/10.25674/444