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Abstract

A second species of the previously monotypic centipede genus Craterostigmus was recently
established on the basis of New Zealand collections (C. crabilli) differing from the Tasmanian C.
tasmanianius with respect to diagnostic characters in nuclear 18S and 28S rRNA, coupled with
differences in body size, leg spinulation and internal anatomy. Analyses of molecular data resolved the
New Zealand species as non-monophyletic because of the isolated phylogenetic position of a population
from Lewis Pass on the South Island that had especially divergent cytochrome ¢ oxidase subunit I (COI)
sequences. Herein, previously missing 16S rRNA sequences for the Lewis Pass samples are added to the
four-gene sample, together with newly collected specimens from South Island and Stewart Island. The
more complete dataset retrieves both C. crabilli and C. tasmanianus as monophyletic, and the four-gene
analysis dataset shows that Stewart Island and North Island populations fall outside a clade that unites
most South Island samples. Despite its favoured role in DNA barcoding, COI performs more poorly than
188, 28S or 16S rRNAs for identifying species of Craterostigmus.

Keywords: Craterostigmus crabilli, Craterostigmomorpha, COI, 16S rRNA, Lewis Pass,
Stewart Island

1. Introduction

The centipede order Craterostigmomorpha, monotypic until recently, includes two species,
Craterostigmus tasmanianus Pocock, 1902 in Tasmania, and C. crabilli Edgecombe &
Giribet, 2008 in New Zealand. The New Zealand species can be differentiated from the type
species in its internal anatomy (Prunescu & Prunescu 2006), body size, spinosity of particular
leg podomeres, and can be easily diagnosed using molecular sequence data from the
commonly sequenced genes 18S rRNA and 28S rRNA (Edgecombe & Giribet 2008). The
phylogenetic/phylogeographic patterns of C. crabilli were recently investigated using four
molecular markers and a broad geographic representation of the known localities for the
species (Edgecombe & Giribet 2008).
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Previous study concluded that nuclear ribosomal genes could be easily used as diagnostic
molecular markers, showing only a few fixed changes and no apparent intraspecific variation,
while mitochondrial markers showed informative variation for reconstructing within-species
patterns. The mitochondrial ribosomal genel6S rRNA showed a pattern of North Island
versus South Island vicariance not clearly recovered with the mitochondrial protein encoding
cytochrome ¢ oxidase subunit I. The latter gene furthermore failed to recover monophyly of
each of the two species, and placed two specimens from Lewis Pass in the northern part of
South Island completely outside Craterostigmus, instead resolving them amongst the
outgroups. The failure in amplifying these two specimens for 16S rRNA prevented us from
concluding whether this unusual position was due to accelerated evolution in cytochrome ¢
oxidase subunit I, or a real phylogenetic pattern.

In this study, we build upon our previous work (Edgecombe & Giribet 2008) and add 16S
rRNA sequence data for specimens from Lewis Pass, the locality that previously proved
problematic. We also add several new specimens from New Zealand collected during a field
trip in February 2008, including five from the South Island and one from Stewart Island, a
land mass not represented in the previous study.

2. Materials and methods

New specimens were collected in February 2008 during a field trip to New Zealand by G
Giribet and S. Vélez, and include specimens from the Kahurangi N.P. (Flora Hut) and Ryans
Creek Track on Stewart Island. We also added new data for the Lewis Pass specimens
discussed by Edgecombe & Giribet (2008). Only specimens for which the mitochondrial
genes were available were used in this study. Specimen distribution in New Zealand can be
found in Edgecombe & Giribet (2008), with the addition of more specimens from the locality
known as Flora Hut in the South Island, and from the northern part of Stewart Island. All
specimens have been deposited at the Museum of Comparative Zoology, in the Department
of Invertebrate Zoology (s. Appendix 1), and are stored at —80 °C. Molecular data were
obtained following the protocols and primers described by Edgecombe & Giribet (2008).

The analyses were restricted to the two informative regions of 18S rRNA and 28S rRNA
plus the two mitochondrial genes 16S rRNA and cytochrome ¢ oxidase subunit I (COI).
Analyses were conducted with the new computer program POY v.4.0.2870 (Varén et al. 2008)
under direct optimisation and using parsimony as the optimality criterion (Wheeler 1996,
Wheeler et al. 2006) with the parameter set selected by Edgecombe & Giribet (2008) (indel
opening cost = 3, indel extension cost = 1, base substitution = 2) (see De Laet 2005). Analyses
consisted of a driven search (time = 1 hour) with ratchet (Nixon 1999) and tree fusing
(Goloboff 1999). All partitions were analysed in combination. In addition, 16S rRNA and COI
data sets were analysed independently and their implied alignments were used to generate
trees with branch lengths proportional to the number of changes (under equal weights) using
PAUP* (Swofford 2002). Nodal support was evaluated with parsimony jackknifing (Farris et
al. 1996, Farris 1997).

3. Results

Analysis of the combined data set resulted in two trees of 2303 weighted steps. The search
evaluated 11 independent repetitions with ratchet and fusing for 39 generations. The shortest
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trees were found 13 times and differed only in the internal resolution of the Flora Hut
specimens. Their strict consensus with jackknife values is presented in Fig. 1. Our combined
data set shows monophyly of each Craterostigmus species, a result that was not found in
Edgecombe & Giribet (2008) due to the divergence in COI sequence data in the Lewis Pass
specimens, for which no 16S rRNA data were hitherto available (see 16S rRNA and COI trees
in Figs 2-3). Interestingly, the Stewart Island specimen included in this analysis constitutes
another lineage of C. crabilli not necessarily connected to any other lineage of South Island
specimens. Its position varies, depending on the analyses or parameter sets explored (results
not shown), but may appear as sister to all other C. crabilli, or sister to the South Island
specimens. Specimens from the North Island, where the species is less abundant than in the
South Island (most probably due to recent forest degradation), form a clade, even though they
belong to two different mountain ranges (Figs 1-3). The South Island specimens appear in
three distinct clades, (a) one including specimens from as far apart as the Catlins in the
southernmost part of the island, Aoraki/Mt Cook and Arthur’s Pass, (b) a second distinct
lineage represented by the Lewis Pass specimens, and (c) a northern clade including the
specimens from the Nelson Lakes and Flora Hut in the Kahurangi N.P.
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Fig. 1 Strict consensus of the two trees (length of 2302 weighted steps) obtained under parsimony

direct optimisation for the combined analysis of all data. Numbers on branches are jackknife
values. The square includes the North Island specimens.
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Fig. 2

Fig. 3
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traced with PAUP* and are proportional to the number of changes.
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4. Discussion

The results of the present study resolve the interrelationships of Craterostigmus with a
better fit to biogeography than did a previous study (Edgecombe & Giribet 2008), which
depicted C. crabilli as polyphyletic for the COI analysis as well as for combined analysis of
all four genes. The four-gene analysis now resolves both C. crabilli and C. tasmanianus as
monophyletic. This hypothesis of mutual monophyly conforms better with a vicariant, trans-
Tasman explanation for speciation in Craterostigmus than did the previous results. An
alternative trans-Tasman dispersal explanation would not be consistent with both species
being monophyletic (one species should be expected to be paraphyletic with respect to the
other).

Non-monophyly in the genes of two sister species could be explained by incomplete lineage
sorting, which could lead to a discordance of gene trees and species trees and thus a lack of
reciprocal monophyly (e.g. Avise et al. 1983), but this does not seem to be the case for COI,
which places some haplotypes from Lewis Pass well before the divergence between the two
species. This pattern strongly conflicts with the fixed nucleotide changes in the nuclear
ribosomal genes and the reciprocal monophyly of the 16S rRNA haplotypes.

The addition of 16S rRNA sequence data for the Lewis Pass specimens proved to have a
pivotal role in allying these samples with C. crabilli. The 16S tree (Fig. 2) depicts the Lewis
Pass specimens within a South Island-Stewart Island clade, with the North Island haplotypes
sister to the remaining C. crabilli, and C. tasmanianus in turn sister to C. crabilli. The more
basal position of the Lewis Pass samples in the combined analysis (Fig. 1) reflects the
continued tendency of the highly-divergent COI sequences to attract the Lewis Pass samples
with outgroups (Fig. 3). Given the continued advocacy of COI as the standard for species
identification in DNA barcoding initiatives, we point out that in the case of Craterostigmus
this gene performs especially poorly for species identification. The more conserved nuclear
ribosomal 18S and 28S rRNAs both allow for accurate identification of the Lewis Pass
specimens as C. crabilli, as does 16S rRNA.
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