Distribution of earthworm growth stages along a naturally occurring soil salinity gradient

Authors

  • Caley Gasch North Dakota State University
  • Rodney Utter North Dakota State University
  • Abbey Wick North Dakota State University

DOI:

https://doi.org/10.25674/so93iss3id170

Keywords:

dryland salinity, endogeic, mollisol, soil health, sulfate salts

Abstract

One major soil health challenge of the Northern Great Plains of North America is the natural occurrence of soluble salts in the soil. Salinity impacts on plant production are well understood, but we stand to learn more about the effects of salinity on soil biological characteristics, especially for sulfate-based salts. We conducted a field survey for three years to quantify the abundance and growth stages of earthworms across a naturally occurring salinity gradient. The gradient was approximately 150 m in length and traversed electrical conductivity values < 1 to 6 mS/cm and associated organic matter content from 6.9 to 4.8 %. We recovered earthworms and cocoons from intact soil cores (20 cm diameter) to 15 cm depth. Most of the recovered earthworms were Aporrectodea trapezoides (Dugés, 1828); however, Aporrectodea tuberculata (Eisen, 1874) and Octolasion tyrtaeum (Savigny, 1826) were also observed in low abundance. Juvenile earthworms were abundant and contributed the most individuals to the total counts in non-saline soils; they were also the group that exhibited the steepest decline in response to increasing salinity levels. Mature earthworm and cocoon counts were generally stable across salinity levels. Though we observed some inter-year variability in earthworm observations, we conclude that the occurrence of juvenile earthworms may serve as a soil health indicator in a salinity context.

References

Arndt, J. L. & J. L. Richardson (1988): Hydrology, salinity and hydric soil development in a North Dakota prairie-pothole wetland system. – Wetlands 8: 93–108.

Arndt, J. L. & J. L. Richardson (1989): Geochemistry of hydric soil salinity in a recharge-throughflow-discharge prairie-pothole wetland system. – Soil Science Society of America Journal 53: 848–855.

Bossuyt, H., J. Six & P. F. Hendrix (2004): Rapid incorporation of carbon from fresh residues into newly formed stable microaggregates within earthworm casts. – European Journal of Soil Science 55: 393–399.

Butcher, K., A. F. Wick, T. DeSutter, A. Chatterjee & J. Harmon (2018): Corn and soybean yield response to salinity influenced by soil texture. – Agronomy Journal 110: 1243–1253.

Butt, K. R., J. Frederickson & R. M. Morris (1995): An earthworm cultivation and soil inoculation technique for land restoration. – Ecological Engineering 4: 1–9.

Capowiez, Y., S. Cadoux, P. Bouchand, J. Roger-Strade, G. Richard & H. Boizard (2009): Experimental evidence for the role of earthworms in compacted soil regeneration based on field observations and results from a semi-field experiment. – Soil Biology and Biochemistry 41: 711–717.

Capowiez, Y., S. Samartino, S. Cadoux, P. Bouchant, G. Richard & H. Boizard (2012): Role of earthworms in regenerating soil structure after compaction in reduced tillage systems. – Soil Biology and Biochemistry 55: 93–103.

Clarke, C. J., R. J. George, R. W. Bell & T. J. Hatton (2002): Dryland salinity in south-western Australia: its origins, remedies, and future research directions. – Australian Journal of Soil Research 40: 93–113.

Combs, S. M. & M. V. Nathan (2011): Soil Organic Matter. – In: Nathan, M. & R. Gelderman (eds): Recommended Chemical Soil Test Procedures for the North Central Region. North Central Region Research Publication No. 221 (Revised) [https://extension.missouri.edu/publications/sb1001].

Curry, J. P. (1988): The ecology of earthworms in reclaimed soils and their influence on soil fertility. – In: Edwards, C. A. & E. F. Neuhauser (eds): Earthworms in Waste and Environmental Management. – SPB Academic, The Haugue: 251–261.

Curry, J. P. & D. C. F. Cotton (1983): Earthworms and land reclamation. – In: Satchell, J. E. (ed): Earthworm Ecology; From Darwin to Vermiculture. – Chapman and Hall, London: 215–228.

Curry, J. P. & O. Schmidt (2007): The feeding ecology of earthworms – A review. – Pedobiologia 50: 463–477.

Deibert, E. J. & R. A. Utter (2003): Earthworm (Lumbricidae) survey of North Dakota fields placed in the U.S. Conservation Reserve Program. – Journal of Soil and Water Conservation 58: 39–45.

Doering, E. J. & F. M. Sandoval (1981): Chemistry of seep drainage in southwestern North Dakota. – Soil Science 132: 142–149.

Eisenhauer, N. (2010): The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. – Pedobiologia 53: 343–352.

Francis, G. S. & P. M. Fraser (1998): The effects of three earthworm species on soil macroporosity and hydraulic conductivity. – Applied Soil Ecology 10: 11–19.

Gardner, W. H. (1986): Water Content. – In: Klute, A. (ed): Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. – American Society of Agronomy & Soil Science Society of America, Madison: 493–544.

Gee, G. W. & D. Or (2002): Particle-Size Analysis – In: Dane, J.H. & G.C. Topp (eds): Methods of Soil Analysis, Part 4. Physical Methods. – Soil Science Society of America, Madison: 255–293.

George, P. R. (1978): The dryland salinity problem in North America. – Journal of the Department of Agriculture, Western Australia, Series 4 3.

Hadrich, J. C. (2012): Managing the economics of soil salinity in the Red River Valley of North Dakota. – Journal of ASFMRA 80–88.

Hallam, J., D. Berdeni, R. Grayson, E. J. Guest, J. Holden, M.G. Lappage, M.T. Prendergast-Miller, D. A. Robinson, A. Turner, J. R. Leake & M. E. Hodson (2020): Effect of earthworms on soil physico-hydraulic and chemical properties, herbage production, and wheat growth on arable land converted to ley. – Science of The Total Environment 713: 136491.

Hallam, J. & M. E. Hodson (2020): Impact of different earthworm ecotypes on water stable aggregates and soil water holding capacity. – Biology and Fertility of Soils 56: 607–617.

Harrell, F. E. J. & C. Dupont (2020): Hmisc: Harrell Miscellaneous. – R package version 4.4-1 [https://cran.r-project.org/web/packages/Hmisc/index.html].

Hendrix, P. F. & P. J. Bohlen (2002): Exotic earthworm invasions in North America: ecological and policy implications. – Bioscience 52: 801–811.

Hurisso, T. T., J. G. Davis, J. E. Brummer, M. E. Stromberger, F. H. Stonaker, B. C. Kondratieff, M. R. Booher & D. A. Goldhamer (2011): Earthworm abundance and species composition in organic forage production systems of northern Colorado receiving different soil amendments. – Applied Soil Ecology 48: 219–226.

Ivask, M., M. Meriste, A. Kuu, S. Kutti & E. Sizov (2012): Effect of flooding by fresh and brackish water on earthworm communities along Matsalu Bay and the Kasari River. – European Journal of Soil Biology 53:11–15.

Jun, T., G. Wei, B. Griffiths, L. Xiaojing, X. Yingjun & Z. Hua (2012): Maize residue application reduces negative effects of soil salinity on the growth and reproduction of the earthworm Aporrectodea trapezoides, in a soil mesocosm experiment. – Soil Biology and Biochemistry 49: 46–51.

Karimi, F., G. Rahimi & Z. Kolahchi (2020): Interaction effects of salinity, sewage sludge, and earthworms on the fractionations of Zn and Cu, and the metals uptake by the earthworms in a Zn- and Cu-contaminated calcareous soil. – Environmental Science and Pollution Research 27: 10565–10580.

Keller, L. P., G. J. McCarthy & J. L. Richardson (1986) Mineralogy and stability of soil evaporites in North Dakota. – Soil Science Society of America Journal 50: 1069–1071.

Khalaf El-Duweini, A. & S. I. Ghabbour (1965): Population density and biomass of earthworms in different types of Egyptian soil. – Journal of Applied Ecology 2: 271–287.

Lee, K. E. & R. C. Foster (1991): Soil fauna and soil structure. – Australian Journal of Soil Research 29: 745–775.

Loeppert, R. H. & D. L. Suarez (1996): Carbonate and Gypsum. –In: Sparks, D. L., A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnson & M. E. Sumner (eds): Methods of Soil Analysis, Part 3. Chemical Methods. – American Society of Agronomy & Soil Science Society of America, Madison: 437–474.

Lubbers, I. M., L. Brussaard, W. Otten & J. W. Van Groenigen (2011): Earthworm-induced N mineralization in fertilized grassland increases both N2O emission and crop-N uptake. – European Journal of Soil Science 62: 152–161.

Lubbers, I. M., M. M. Pulleman & J. W. Van Groenigen (2017): Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? – Soil Biology and Biochemistry 105: 12–24.

Marhan, S. & S. Scheu (2006): Mixing of different mineral soil layers by endogeic earthworms affects carbon and nitrogen mineralization. – Biology and Fertility of Soils 42: 308–314.

Matthees, H. L., Y. He, R. K. Owen, D. Hopkins, B. Deutsch, J. Lee, D. E. Clay, C. Reese, D. D. Malo & T. M. DeSutter (2017): Predicting soil electrical conductivity of the saturation extract from a 1:1 soil to water ratio. – Communications in Soil Science and Plant Analysis 48: 2148–2154.

McDaniel, J. P., G. Butters, K. A. Barbarick & M. E. Stromberger (2015): Effects of Aporrectodea caliginosa on soil hydraulic properties and solute dispersivity. – Soil Science Society of America Journal 79: 838–847.

Miller, J. J., M. L. Owen, C. F. Drury & D. S. Chanasyk (2019): Short-term legacy effects of feedlot manure amendments on earthworm abundance in a clay loam soil. – Canadian Journal of Soil Science 99: 447–457.

Mummey, D. L., M. C. Rillig & J. Six (2006): Endogeic earthworms differentially influence bacterial communities associated with different soil aggregate size fractions. – Soil Biology and Biochemistry 38: 1608–1614.

Munns, R. (2002): Comparative physiology of salt and water stress. – Plant, Cell and Environment 25: 239–250.

National Agricultural Statistics Survey (2020): North Dakota Agricultural Overview for 2019. – United States Department of Agriculture [https://www.nass.usda.gov/Statistics_by_State/North_Dakota/index.php].

NDAWN (2020): North Dakota Agricultural Weather Network, Mooreton Station. – North Dakota State University [https://ndawn.ndsu.nodak.edu/].

Nychka, D., R. Furrer, J. Paige, F. Gerber, M. Iverson & University Corporation for Atmospheric Research (2020): fields: Tools for spatial data. – R package version 11.4 [http://CRAN.R-project.org/package=fields].

Oo, A. N., C. B. Iwai & P. Saenjan (2015): Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with or without earthworms. – Land Degradation & Development 26: 300–310.

Owojori, O. J. & A. J. Reinecke (2009): Avoidance behaviour of two eco-physiologically different earthworms (Eisenia fetida and Aporrectodea caliginosa) in natural and artificial saline soils. – Chemosphere 75: 279–283.

Owojori, O. J., A. J. Reinecke, P. Voua-Otomo & S. A. Reinecke (2009): Comparative study of the effects of salinity on life-cycle parameters of four soil-dwelling species (Folsomia candida, Enchytraeus doerjesi, Eisenia fetida and Aporrectodea caliginosa). – Pedobiologia 52: 351–360.

Owojori, O. J. & A. J. Reinecke (2014): Differences in ionic properties of salts affect saline toxicity to the earthworm Eisenia fetida. – Applied Soil Ecology 83: 247–252.

Pannell, D. J. & M. A. Ewing (2006): Managing secondary dryland salinity: options and challenges. – Agricultural Water Management 80: 41–56.

R Core Team (2020): R: A language and environment for statistical computing. – R Foundation for Statistical Computing [https://www.R-project.org/].

Rengasamy, P. & K. A. Olsson (1991): Sodicity and soil structure. – Australian Journal of Soil Research 29: 935–952.

Reynolds, J. W. (1977): The Earthworms (Lumbricidae and Sparganophilidae) of Ontario. – Royal Ontario Museum, Toronto: 141 pp.

Reynolds, J. W. (1978): A contribution to our knowledge of the earthworm fauna of North Dakota. – Megadrilogica 3: 148–149.

Reynolds, J. W. (2004): The status of earthworm biogeography, diversity, and taxonomy in North America revisited with glimpses into the future. – In: Edwards, C. A. (ed.): Earthworm Ecology, second edition. – CRC Press, Boca Raton: 63–74.

Reynolds, J. W. (2015): A checklist by counties of earthworms (Oligochaeta: Lumbricidae) in North and South Dakota, USA. – Megadrilogica 17: 157–178.

Reynolds, J. W. (2020): Earthworms in American Ecoregions. – OmniScriptum, Republic of Moldova: 430 pp.

Rhoades, J. D. (1996): Salinity: Electrical conductivity and total dissolved solids. –In: Sparks, D. L., A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnson & M. E. Sumner (eds): Methods of Soil Analysis, Part 3. Chemical Methods. American Society of Agronomy & Soil Science Society of America, Madison: 417–435.

Sandoval, F. M., L. C. Benz & R. H. Mickelson (1964): Chemical and physical properties of soils in a wet saline area in eastern North Dakota. – Soil Science Society of America Journal 28: 195–199.

Schwert, D. P. (1990): Oligochaeta: Lumbricidae. – In: Dindal, D. L. (ed.): Soil Biology Guide. – John Wiley & Sons Inc., New York: 341–356.

Sharif, F., M. U. Danish, A. S. Ali, A. U. Khan, L. Shahzad, H. Ali & A. Ghafoor (2016): Salinity tolerance of earthworms and effects of salinity and vermi amendments on growth of Sorghum bicolor. – Archives of Agronomy and Soil Science 62: 1169–1181.

Skarie, R. L., J. L. Richardson, A. Maianu & G. K. Clambey (1986): Soil and groundwater salinity along drainage ditches in eastern North Dakota. – Journal of Environmental Quality 15: 335–340.

Soil Survey Staff (2020): Web Soil Survey. – Natural Resources Conservation Service, United States Department of Agriculture [https://websoilsurvey.nrcs.usda.gov/].

Stroud, J. L. (2019): Soil health pilot study in England: Outcomes from an on-farm earthworm survey. – PLOS ONE 14: e0203909.

Thomas, G. W. (1996): Soil pH and soil acidity. – In: Sparks,

D. L., A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnson & M. E. Sumner (eds): Methods of Soil Analysis, Part 3. Chemical Methods. – American Society of Agronomy & Soil Science Society of America, Madison: 475–490.

Tomlin, A. D. & C. A. Fox (2003): Earthworms and agricultural systems: Status of knowledge and research in Canada. – Canadian Journal of Soil Science 83: 265 – 278.

van Vliet, P. C. J., B. van der Stelt, P. I. Rietberg & R. G. M. de Goede (2007) Effects of organic matter content on earthworms and nitrogen mineralization in grassland soils. – European Journal of Soil Biology 43: S222–S229.

Vos, H. M. J., G. F. Koopmans, L. Beezemer, R. G. M. de Goede, T. Hiemstra & J. W. van Groenigen (2019): Large variations in readily-available phosphorus in casts of eight earthworm species are linked to cast properties. – Soil Biology and Biochemistry 138: 107583.

Vos, H. M. J., M. B. H. Ros, G. F. Koopmans & J. W. van Groenigen (2014): Do earthworms affect phosphorus availability to grass? A pot experiment. – Soil Biology and Biochemistry 79: 34–42.

Wang, Y., J. Chen, W. Gu, Y. Xu, J. Gu & J. Tao (2016): Earthworm activities increase the leaching of salt and water from salt-affected agricultural soil during the wet–dry process under simulated rainfall conditions. – Biology and Fertility of Soils 52: 323–330.

Weil, R. R. & N. C. Brady (2017): The Nature and Properties of Soils. – Pearson, Upper Saddle River: 1104 pp.

Wickham, H. (2020): scales: Scale functions for visualizations. – R package version 1.1.1 [http://CRAN.R-project.org/package=scales].

Wickham, H., R. Francois, L. Henry, K. Muller & RStudio (2020): dplyr: A grammar of data manipulation. – R package version 1.0.2. [https://cran.r-project.org/web/packages/dplyr/index.html].

Wu, Y. P., Y. Zhang, Y. M. Bi & Z. J. Sun (2015): Biodiversity in saline and non-saline soils along the Bohai Sea coast, China. – Pedosphere 25: 307–315.

Downloads

Published

2021-12-01

How to Cite

Gasch, C., Utter, R., & Wick, A. (2021). Distribution of earthworm growth stages along a naturally occurring soil salinity gradient. SOIL ORGANISMS, 93(3), 195–205. https://doi.org/10.25674/so93iss3id170

Issue

Section

ARTICLES